
Lecture Notes CS:5350 Randomized Algorithms
Lecture 15: Oct 15, 2019

Scribe: Cory Kromer-Edwards

1 Randomized Algorithms

A randomized algorithm is one that has access to a sequence of random bits, which it uses in
making decisions.

Figure 1: An example of a black box randomized algorithm

Definition: (TA(I)) A randomized algorithm A can behave differently on different runs of the
same input I. Therefore, running time of algorithm A on input I is a random variable given as
TA(I).

Figure 2: Visual of the probability distribution TA(I)

So the running time of algorithm A on an input of size n can be defined in two ways:

(i)
T (n) = max

I:|I|=n
E[TA(I)] (1)

1

where E is the expected value over the algorithm’s randomness. Note that this is similar to
the usual worst case definition of the running time of a deterministic algorithm, except that
for randomized algorithms we take the worst case over the expectation of the running time
on input I.

(ii) Let tA(I) be a value such that

Prob[TA(I) ≥ tA(I)] ≤ 1

n
· (2)

Figure 3: The probability distribution of TA(I), visually showing Inequality 2

The probability that the random variable TA(I) exceeds tA(I) is at most 1
n . The value tA(I)

from Inequality 2 can then be used in the following alternate definition of the running time
of a randomized algorithm.

T (N) = max
I:|I|=n

tA(I) (3)

Just like the running time is a random variable, the output of A on input I is also a random
variable, denoted OA(I). We allow randomized algorithms to make errors provided we can control
the error probability. See Figure 4. We try to design algorithms for which there is an upper
bound on this error probability. In particular, for some ε > 0, we might be interested in designing
algorithms such that Equation 4 holds.

Prob[OA(I) is wrong] ≤ ε· (4)

Definition: Las Vegas algorithms are randomized algorithms that have no error (ε = 0). These
algorithms run until a correct answer is produced.
Definition: Monte Carlo algorithms are randomized algorithms that can have error (ε > 0).
Some examples of Monte Carlo algorithms are the Miller-Robin algorithm for Primality Testing,
finger printing algorithm for Verifying Matrix Multiplication, and Karger’s MinCut algorithm.

2

Figure 4: Showing correctness probability compared to error probability

2 Balanced Partition

Balanced Partition is a ”toy” example problem for which we will show both a Monte Carlo algorithm
and a Las Vegas algorithm.
BalancedPartition (BP)
Input: A list L of distinct integers
Output: A partition of L into sublists L1 and L2 such that the following two conditions apply:

(i) |L|3 ≤ |L1| ≤ 2
3 |L|

(ii) for all x ∈ L1 and y ∈ L2, x < y

Result: Lists L1 and L2

1 Function BP(L: list) : (list, list) is
2 Pick an index i ∈ {1, 2, . . . , |L|} uniformly at random
3 L1 ←− Ø, L2 ←− Ø
4 for each l ∈ L do
5 if l ≤ L[i] then
6 append l to L1

7 else
8 append l to L2

9 end

10 end
11 output (L1, L2)

12 end

Algorithm 1: Original Balanced Partition function

Notes:

• This algorithm has a deterministic running time of O(n), assuming that a random index (in
step 2) can be picked in O(1) time.

• It is a Monte Carlo algorithm with Prob[OA(I) is wrong] ≤ 2
3 . This can be seen better in

Figure 5 where the two white parts represent choiced of indices that lead to wrong output.

3

Figure 5: Showing input L sorted with correct answer (gray) and wrong answer (white)

There are two ways to extend BP to amplify the correctness probability. These are given in
Algorithm 3 and Algorithm 2.

Result: Lists L1 and L2

1 Function BP-LasVegas(L: list) : (list, list) is
2 repeat
3 (L1, L2) ←− BP (L)

4 until |L|3 ≤ |L1| ≤ 2
3 |L| ;

5 output (L1, L2)

6 end

Algorithm 2: Las Vegas version of Balanced Partition

Result: Lists L1 and L2

1 Function BP-MonteCarlo(L: list) : (list, list) is
2 for i←− 1 to k do
3 (L1, L2) ←− BP (L)

4 if |L|3 ≤ |L1| ≤ 2
3 |L| then

5 output (L1, L2)
6 end

7 end
8 output error

9 end

Algorithm 3: Monte Carlo version of Balanced Partition

2.1 BP-LasVegas

Note that there is no error in this algorithm (ε = 0). Let IBP−LV (L) = number of iterations
performed by BP-LV. The distribution of IBP−LV (L) can be seen in Figure 6.
It can be seen in Figure 6 that IBP−LV (L) is geometrically distributed with probability 1

3 .

Corollary. E[IBP−LV (L)] = 3

Corollary. E[IBP−LV (L)] = O(|L|)

Corollary. E[TBP−LV (n)] = O(n)

4

Figure 6: The distribution of IBP−LV (L)

2.2 BP-MonteCarlo

The running time of the BP-MonteCarlo algorithm is not a random variable and is O(kn). This
can be easily seen as the running time of BP is O(n) and k times in worst case.
The error probability of the BP-MonteCarlo algorithm is (23)k. This is because the error probability
per run of BP is 2

3 , and, if the algorithm is run k times, that means that it did not have a correct
answer on run 1 and run 2 and run 3 and so on and using in depence this gives an error probability
of 2

3 ·
2
3 · . . . ·

2
3 (k times).

For choosing an appropriate k in the BP-MonteCarlo algorithm, suppose we want

Prob[OBP−MC(L) = wrong] ≤ ε

for a given, ε > 0. To ensure this, we pick k such that:(
2

3

)k
≤ ε⇒

(
3

2

)k
≥ 1

ε
⇒ k ≥ log 3

2
(
1

ε
)

Therefore, we want k = dlog 3
2
(1ε)e.

3 The MinCut Problem

When we studied the MaxFlow problem, we also studied the dual s − t MinCut problem. Here
we consider the ”global” MinCut problem. Here we are not given a specific s or t; instead we are
asked to find minimum size cut over all possible (s, t) pairs.
MinCut
Input: A connected graph G = (V,E)
Output: A set E′ ⊆ E of smallest size such that G \ E′ is a disconnected graph

3.1 Karger’s MinCut algorithm

Karger’s MinCut algorithm performs operations called contracts many times. The graphs in this
algorithm may have parallel edges.
Definition: A contract is an operation represented as given as contract(G, {u, v}) where {u, v}
is an edge in G. Each contract removes two nodes, u and v, from G along with the edge(s) that
connect u to v. The contract then adds in one single node uv such that uv keeps all outgoing edges
from both u and v to other nodes in the graph.
Example: An example graph can be seen in Figure 8.

5

Figure 7: An example of possible minimum cuts for this graph

Figure 8: An example graph that could be input to the contract operation

Figure 9: Graph after we contract nodes b and d into node bd

In Figure 8, if we contracted nodes b and d and the new node that would be created would be
named bd, we would get Figure 9 as a result.

Karger’s MinCut algorithm will be discussed further in the next lecture.

6

