
CS:5350 Homework 4, Fall 2019
Due in class on Thu, Dec 12th

Notes: (a) It is possible that solutions to some of these problems are available to you via text-
books, on-line lecture notes, etc. If you use any such sources even partially, please acknowledge
these in your homework fully and present your solutions in your own words. You will benefit
most from the homework, if you seriously attempt each problem on your own first, before seek-
ing other sources. (b) It is okay to form groups of three in solving and submitting homework
solutions. (The syllabus says groups of at most two are allowed, but given the size of the class
and the fact that the class has no TA, I am modifying this requirement to allow groups of three.)
But, my advice from (a) still applies: you will benefit most from the homework, if you seriously
attempt each problem on your own first, before seeking help from your group partner(s). (c)
Unless you have a documented accomodation, no late submissions are permitted. You will re-
ceive no points for your submission if your submission is not turned in at the beginning of class
on the due date. (d) Your submissions will be evaluated on correctness and clarity. Correctness
is of course crucial, but how clearly you communicate your ideas is also quite important.

The last 4 problems are from the Shmoys-Williamson textbook “The Design of Approximation
Algorithms” that can be found at http://www.designofapproxalgs.com/book.pdf.

1. You are given a set A = {a1, a2, . . . , an} of positive integers and a positive integer B. A
subset S ⊆ A is called feasible if the sum of the numbers in S does not exceed B, i.e.,∑

si∈S ai ≤ B. The sum of the numbers in S is called the total sum of S.

You would like to select a feasible subset S of A whose total sum is as large as possible. For
example, if A = {8, 2, 4} and B = 11 then the optimal solution is the subset S = {8, 2}.

(a) Here is an algorithm for the problem.

S ← ∅; T ← 0
for i← 1 to n do

if T + ai ≤ B then
S ← S ∪ {ai}
T ← T + ai

return S

Describe an input for which the total sum of the set S returned by this algorithm is
less than half the total sum of some other feasible subset of A.

(b) Describe a 1/2-approximation algorithm for the problem. Your algorithm should run
in O(n log n) time.

(c) Prove correctness of the algorithm you described in (b), i.e., it returns a feasible subset
S whose total sum is at least half as large as the total sum of an optimal subset.

2. The Bin Packing problem takes as input an infinite supply of bins B1, B2, B3, . . ., each bin
of size 1 unit. We are also given n items a1, a2, . . . , an and each item aj has a size sj that
is a real number in the interval [0, 1]. The Bin Packing problem seeks to find the smallest
number of bins such that all n items can be packed into these bins.

For example, suppose that we are given 4 items a1, a2, a3 and a4 of sizes 0.5, 0.4, 0.6, and
0.5 respectively. We could pack a1 and a2 in bin B1 because s1 + s2 = 0.9 ≤ 1. We could
then pack a3 into bin B2, but we could not also add a4 to bin B2, because s3+s4 = 1.1 > 1.
So a4 would have to be packed in bin B3. This gives us a bin packing of the 4 items into
three bins. An alternate way of packing items that would lead to the use of just two bins

1



is to pack a1 and a4 into bin B1 and a2 and a3 into bin B2. This packing that uses only
two bins is an optimal solution to the Bin Packing problem.

The First Fit greedy algorithm processes items in the given order a1, a2, . . . , an and it
considers the bins in the order B1, B2, . . .. For each item aj being processed, the algorithm
packs aj into the first bin that has space for it.

Prove that the First Fit algorithm is a 2-approximation for Bin Packing.

3. Problem 1.1.

4. Problem 2.1.

5. Problem 3.1.

6. Problem 3.2.

2


