
CS:5350 Homework 3, Fall 2019
Due in class on Thu, Nov 7th

Notes: (a) It is possible that solutions to some of these problems are available to you via text-
books, on-line lecture notes, etc. If you use any such sources even partially, please acknowledge
these in your homework fully and present your solutions in your own words. You will benefit
most from the homework, if you seriously attempt each problem on your own first, before seek-
ing other sources. (b) It is okay to form groups of three in solving and submitting homework
solutions. (The syllabus says groups of at most two are allowed, but given the size of the class
and the fact that the class has no TA, I am modifying this requirement to allow groups of three.)
But, my advice from (a) still applies: you will benefit most from the homework, if you seriously
attempt each problem on your own first, before seeking help from your group partner(s). (c)
Unless you have a documented accomodation, no late submissions are permitted. You will re-
ceive no points for your submission if your submission is not turned in at the beginning of class
on the due date. (d) Your submissions will be evaluated on correctness and clarity. Correctness
is of course crucial, but how clearly you communicate your ideas is also quite important.

1. Time division multiple access (TDMA) is a method for different nodes in a distributed
system to access a shared physical medium. For example, for nodes in a wireless network,
their radio frequency channel is the shared medium that they all need to access to be
able to communicate. TDMA is also used in other settings such as bus networks, where
different nodes need to access a shared bus in order to communicate. In TDMA, time is
partitioned into time slots and each node has its own time slot during which it uses the
shared medium.

Consider the situation in which there are n identical1 nodes in a wireless network, each of
which needs to send a message to a base station. The base station is within the transmission
range of the wireless nodes, but it is possible that not all pairs of wireless nodes are in
each others’ transmission ranges. The wireless nodes have access to a single radio frequency
channel and therefore if two or more of these nodes transmit their message at the same time,
the base station hears a “collision,” but does not receive any of the transmitted messages.
More precisely, a base station has the ability to distinguish among three situations in a
time slot: (i) it hears no transmission, (ii) it hears a “collision”, and (iii) it hears a message.
The base station can also transmit, but it also uses the same radio frequency channel as
the wireless nodes. Therefore, if the base station is transmitting at the same time as a
wireless node, it will hear a collision.

Now notice that n nodes have to send messages to the base station and no two nodes can
transmit at the same time. So at least n time slots are needed for all the messages to
reach the base station. The problem is how should the wireless nodes and the base station
coordinate transmissions so that it does not take too many time slots for all messages to
reach the base station.

(a) Use ideas you have learned from our discussion of Luby’s MIS algorithm to design a
randomized algorithm that uses O(n) times slots in expectation to ensure that the
messages from all n wireless nodes reach the base station. You can assume that nodes
initially know n.

(b) Prove that your algorithm runs in expected O(n) rounds.

2. Consider the execution of Luby’s MIS algorithm on a cycle C of length n.

(a) Consider an arbitrary vertex v that is active at the start of some iteration i. Prove
that

Prob[v joins the MIS in iteration i] ≥ c

1Here “identical” means that nodes do not have IDs.

1

for some constant c > 0.

(b) Consider a path P of vertices all of which are active at the start of some iteration i.
Using the result in (i), show that the probability that all vertices in P are active after
iteration i is at most 1/2c

′|P | for some constant c′ > 0.
Note: Be careful; if u and v are neighbors then the event that u stays active after
iteration i is not independent of the event that v stays active after iteration i. But,
you can pick vertices that are far enough from each other in P , you can still use
independence.

(c) Consider a path P of length d
√

log ne in C. Show that for a sufficiently large constant
C, the probability that all vertices in P are active after C

√
log n iterations is at most

1/n2.

(d) Modify Luby’s MIS algorithm so that terminates in O(
√

log n) rounds with high prob-
ability on cycles of length n. Use the result in (c) to guide your modification. Show
that your algorithm is correct and that it has the desired running time.

3. A graph coloring is an assignment of colors to vertices of a graph so that no two adjacent
vertices have the same color.

Here is a simple “Luby-like” randomized, distributed algorithm to color the vertices of
a graph G = (V,E) using 3∆ colors, where ∆ is the maximum degree of a vertex in G.
Initially, let Cv = {1, 2, . . . , 3 · ∆} be the set of colors available for each vertex v. Every
vertex is initially colorless. In each iteration, each colorless vertex v in G picks a color from
Cv uniformly at random. Each vertex v that has just picked a color then checks if any
neighbor has chosen the same color. If there is a neighbor who has chosen the same color
as v, then v “backs off” i.e., reverts back to being colorless. Otherwise, v makes its color
choice permanent. Finally, for each colorless v, we delete from Cv all colors that became
permanent at a neighbor of v. The algorithm then proceeds to the next iteration.

(a) Show that in any iteration, the probability that a colorless vertex v gets colored in
that iteration is at least a constant.

(b) Let x denote the number of colorless vertices at the start of an interation. Using
the concepts of indicator random variables and linearity of expectation, show that in
expectation at most x/c vertices, for constant c > 1, of the graph remain colorless
after the iteration.

4. As mentioned in class, there is a simple randomized Las Vegas algorithm that solves the
Selection problem. This is very similar to the randomized quicksort algorithm discussed
in class. Here is an informal description of this algorithm. An element in a list is said
to have rank k if it is the k-th smallest element in the list. Suppose we want to find
an element of rank k in the given list L (of n distinct elements). We pick a pivot index
p ∈ [1 . . . n] uniformly at random and construct sublists L1 = {u ∈ L | u < L[p]} and
L2 = {v ∈ L | v > L[p]}. If L[p] has rank k, we are done. Otherwise, we recurse on one of
L1 or L2 looking for an element of appropriate rank.

(a) State this algorithm precisely in pseudocode.

(b) Show that the expected running time of the algorithm is O(n) by mimicking the
approach used for analyzing randomized quicksort in class. Specifically, let Xij denote
the number of times yi and yj are compared by the algorithm. (Recall the definitions
of yi and yj from lecture notes.) Let X =

∑
i

∑
j Xij denote the total number of

comparisons made by the algorithm. Show that E[X] = O(n).

5. Consider a modification of Karger’s mincut algorithm in which in each iteration we pick a
pair of vertices u and v uniformly at random and contract this pair. Whether u and v are

2

connected by an edge is not relevant to this choice. It turns out that this modified version
of Karger’s algorithm is pretty bad.

To see this consider the following graph. Let n be an even, positive integer. Construct
an n-vertex graph by taking two size-n/2 cliques C1 and C2 and adding one edge between
them. The edge we add between C1 and C2 connects an arbirarily chosen pair of vertices.

(a) What is the probability that Karger’s (original) mincut algorithm performs a “bad”
contract in the first iteration of the algorithm?

(b) What is the probability that Karger’s (modified) mincut algorithm performs a “bad”
contract in the first iteration of the algorithm?

(c) Starting with your calculation in (b), show that the probability that modified Karger’s
mincut algorithm will find the mincut in the given graph is at most 1/2c·n for some
constant c > 0.

(d) As we have seen in several examples, repeating a randomized algorithm a bunch of
times and returning the best answer found is a simple way of amplifying the probability
of correctness. Why isn’t this a useful option for modified Karger’s mincut algorithm?

3

