1. We say that a Turing machine M accepts a string $w \in \{0,1\}^*$ if on input w, M halts and outputs 1. A Turing machine M is said to have property R if whenever M accepts w it accepts w^R. (Note: w^R denotes the string obtained by reversing string w; e.g., $(011)^R$ is 110.) Define a function $R : \{0,1\}^* \rightarrow \{0,1\}$ as follows: $R(\alpha) = 1$ if M_α has property R and $R(\alpha) = 0$ otherwise. Prove that the function R is uncomputable.

Hint: For any binary string $x \in \{0,1\}^*$, consider the function HALT_x defined as follows: $\text{HALT}_x(\alpha) = 1$ if M_α halts on input x and $\text{HALT}_x(\alpha) = 0$ if M_α does not halt on input x.

Reduce the problem of computing HALT_x, for any $x \in \{0,1\}^*$, to the problem of computing R. In other words, if there is a TM M_R that computes R then one could use this TM to construct a new TM M_x that could solve HALT_x. This step is the heart of the proof and conceptually most challenging.

Finally, argue that since HALT is uncomputable, HALT_x is uncomputable for some $x \in \{0,1\}^*$. This contradicts the existence of M_R.

2. Problem 1.12 (Chapter 1, Page 35).

Hint for Part 3(a): Fix $x \in \{0,1\}^*$ and again consider HALT_x and show that Rice’s Theorem implies that HALT_x is uncomputable. This is fairly straightforward if you understand the statement of Rice’s Theorem. Then argue that if HALT were computable, then HALT_x would also be computable (for every $x \in \{0,1\}^*$) and this contradicts the implication about HALT_x derived from Rice’s Theorem.

Hint for Part 3(b): The textbook provides a hint for this on page 531 and again HALT_x plays an important role. Here I expand on this hint. Consider a non-trivial set S of partial functions and without loss of generality suppose that Φ (the function that is not defined anywhere) is not in S. Since S is non-empty it contains a partial function f that is computed by some TM M_f. Also, since $f \neq \Phi$, f is defined for some $x \in \{0,1\}^*$.

Now reduce HALT_x to f_S. In other words, assume that the function f_S is computable by some TM M_S and use the existence of M_S to design a TM M_x for HALT_x. As in the previous problem, this would contradict the uncomputability of HALT.