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Hospital-Acquired Infections

Over the last 10 years, our research group has pursued a program of research that
ultimately seeks to better understand hospital-acquired infections (HAIS).
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Over the last 10 years, our research group has pursued a program of research that
ultimately seeks to better understand hospital-acquired infections (HAIS).

We have developed new measurement technology to collect data within the
community as well as from patients and healthcare practitioners.

We have devised algorithmic solutions to a broad range of clinical problems,
including, for example, patient outcome prediction and diagnostic delays.

A particular focus of our group is on using mathematical models as a basis for
simulations that can help inform useful healthcare interventions or detect as yet
unrecognized relationships between practices and outcomes.
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Hospital-Acquired Infections

Over the last 10 years, our research group has pursued a program of research that
ultimately seeks to better understand hospital-acquired infections (HAIS).

We have developed new measurement technology to collect data within the
community as well as from patients and healthcare practitioners.

We have devised algorithmic solutions to a broad range of clinical problems,
including, for example, patient outcome prediction and diagnostic delays.

A particular focus of our group is on using mathematical models as a basis for
simulations that can help inform useful healthcare interventions or detect as yet
unrecognized relationships between practices and outcomes.

In short, we think of ourselves as John Snow with loads of data, fancy
algorithms, and fast computers.
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Why Study Hospital-Acquired Infections?

According to the Centers for Disease Control and Prevention (CDC), HAIs affect

about 2 million patients in US hospitals each year and result in an estimated
99.000 deaths.
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According to the Centers for Disease Control and Prevention (CDC), HAIs affect

about 2 million patients in US hospitals each year and result in an estimated
99.000 deaths.

The estimated direct medical costs of HAIs in US hospitals ranges from $28.4
billion to $45 billion per year.
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Why Study Hospital-Acquired Infections?

According to the Centers for Disease Control and Prevention (CDC), HAIs affect
about 2 million patients in US hospitals each year and result in an estimated

99.000 deaths.

The estimated direct medical costs of HAIs in US hospitals ranges from $28.4
billion to $45 billion per year.

Infections like influenza and MRSA routinely spread to and among hospitalized
patients, often with healthcare workers (HCW) as the vector.
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Hospital-Acquired Infections

HAIs, like any infection, are spread through interaction; by direct contact,
droplet, or airborne means, depending on the nature of the pathogen.
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HAIs, like any infection, are spread through interaction; by direct contact,
droplet, or airborne means, depending on the nature of the pathogen.

Within a hospital, HCW behavior can affect disease transmission, through
vaccination, hand hygiene, isolation and use of contact precautions (gowns and
gloves), travel restrictions (like the Wuhan coronavirus) and other behavioral
changes.
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Hospital-Acquired Infections

HAIs, like any infection, are spread through interaction; by direct contact,
droplet, or airborne means, depending on the nature of the pathogen.

Within a hospital, HCW behavior can affect disease transmission, through
vaccination, hand hygiene, isolation and use of contact precautions (gowns and
gloves), travel restrictions (like the Wuhan coronavirus) and other behavioral
changes.

For example, hand hygiene is to HAI as vaccination 1s to communicable diseases,
but such measures are only effective if adherence rates are high (remember
Bernoulli!), and adherence rates among HCWs typically average less than 50%.
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Hospital-Acquired Infections

HAIs, like any infection, are spread through interaction; by direct contact,
droplet, or airborne means, depending on the nature of the pathogen.

Within a hospital, HCW behavior can affect disease transmission, through
vaccination, hand hygiene, isolation and use of contact precautions (gowns and
gloves), travel restrictions (like the Wuhan coronavirus) and other behavioral
changes.

For example, hand hygiene is to HAI as vaccination 1s to communicable diseases,
but such measures are only effective if adherence rates are high (remember
Bernoulli!), and adherence rates among HCWs typically average less than 50%.

Alternatively, policy interventions, such as risk-based room assignments or deep
cleaning of rooms at discharge, could also reduce the (population) burden of
infections.
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Hospital Acquired Clostridioides difficile Infection (CDI)

Clostridioides difficile, or C. diff, 1s a leading cause of nosocomial diarrhea in the
United States and 1s associated with significant morbidity and mortality 1n
hospitalized patients.
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persist on contaminated surfaces for as much as 30 days, and can be spread via
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Hospital Acquired Clostridioides difficile Infection (CDI)

Clostridioides difficile, or C. diff, 1s a leading cause of nosocomial diarrhea in the
United States and 1s associated with significant morbidity and mortality 1n
hospitalized patients.

Symptoms include diarrhea, fever, and nausea; complications may include
pseudomembranous colitis, toxic megacolon, perforation of the colon, and sepsis.

CDlI 1s spread via the fecal-oral route.

C. diff 1s a spore-forming bacteria (not all bacteria form spores), which can

persist on contaminated surfaces for as much as 30 days, and can be spread via
HCW hands.

Spores are not harmed by alcohol-based hand rub.
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Observed Risk Factors for CDI

Men, infants and older adults (>65), patients with complications or
comorbidities, those with multiple hospitalizations or those with extended
hospital stays are known to be particularly prone to CDI.
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Observed Risk Factors for CDI

Men, infants and older adults (>65), patients with complications or
comorbidities, those with multiple hospitalizations or those with extended
hospital stays are known to be particularly prone to CDI.

CDI 1s also associated with use/overuse of antibiotics (especially specific
antibiotics), proton pump inhibitors and histamine blockers.

ABX use disrupts the intestinal fauna, giving CDI a chance to take hold.

Note that CDI can also be asymptomatic; that 1s, a patient can test positive but

have no symptoms: many otherwise healthy people — including HCWs and
family members — are colonized with C. diff, meaning they can spread the
disease.
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CDI at UIHC

Variable cases non-cases
1 606 (0.66%) | 239,642 (99.32%)
Age (median, range) 58 (0-98) 45 (0-105)
Age: < 45 450 (28.02) 111,379 (46.48)
Age: [45, 64] 575 (35.80) 76,127 (31.77)
Age: > 64 581 (36.18) 52,136 (21.76)
LOS (median, range) 9 (0-447) 3 (0-562)
LOS: < 4 343 (21.36) 133,568 (55.74)
LOS: [4, 7] 371 (23.10) 61,913 (25.84)
LOS: > 7 892 (55.54) 44,161 (18.43)
Male 821 (51.12) 115, 765 (48.31)
White 1411 (87.86) 196,741 (82.10)
At least 1 admit in previous 60 days 587 (36.55) 59,608 (24.87)
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CDI at UIHC

Variable cases non-cases
1,606 (0.66%) | 239,642 (99.32%)
CCI (median, range) 2 (0-51) 0 (0-67)
CCl:=0 503 (31.32) 126,948 (52.97)
CCl: 1-2 502 (31.26) 61,683 (25.74)
CCl: > 3 601 (37.42) 51,011 (21.29)

Histamine 2 Blocker 342 (21.30) 31,509 (13.15)
Proton Pump Inhibitor 917 (57.10) 2630 (36.36)
Low Albumin Level 198 (12.33) 6,952 (2.90)
Amoxicillin/ampicillin 130 (8.09) 18,751 (7.82)
Clindamycin 65 (4.05) 8,676 (3.62)
Third-generation cephalosporin 164 (10.21) 11,231 (4.69)
Fourth-generation cephalosporin 251 (15.63) 7409 (3.09)
Fluoroquinolone 501 (31.20) 27,070 (11.30)
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CDI Treatment and Prevention

Antibiotics such as metronidazole, vancomycin or fidaxomicin will cure CDI.
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Proactive control of antibiotic use, including changing prescription norms and
practices, can help decrease the likelihood of a CDI outbreak.
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Antibiotics such as metronidazole, vancomycin or fidaxomicin will cure CDI.

Proactive control of antibiotic use, including changing prescription norms and
practices, can help decrease the likelihood of a CDI outbreak.

Once a CDI has occurred, possible interventions to reduce its spread include
improved hand hygiene compliance, deep cleaning, use of UV-emitting robots for
room disinfection, improved room assignment policies, etc.
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CDI Treatment and Prevention

Antibiotics such as metronidazole, vancomycin or fidaxomicin will cure CDI.

Proactive control of antibiotic use, including changing prescription norms and
practices, can help decrease the likelihood of a CDI outbreak.

Once a CDI has occurred, possible interventions to reduce its spread include
improved hand hygiene compliance, deep cleaning, use of UV-emitting robots for
room disinfection, improved room assignment policies, etc.

Fecal microbiota transplants and probiotics may decrease risk of recurrence.
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Reducing CDI

Choosing an effective intervention depends on knowing what the primary
pathway of infection 1s likely to be.
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Reducing CDI

Choosing an effective intervention depends on knowing what the primary
pathway of infection 1s likely to be.

Samore (1999) lists 3 mechanisms for CDI transmission: direct (e.g., from HCW
hands), environmental (e.g., from spores left in the environment) and
endongenous (i.e., self colonized).
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Reducing CDI

Choosing an effective intervention depends on knowing what the primary
pathway of infection 1s likely to be.

Samore (1999) lists 3 mechanisms for CDI transmission: direct (e.g., from HCW
hands), environmental (e.g., from spores left in the environment) and
endongenous (i.e., self colonized).

Each of these pathways can be addressed by a different intervention (e.g., better
hand hygiene, deep cleaning at discharge, or improved ABX Rx and patient
transfer practices).
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CDI Pathways

Unfortunately, evidence 1s mixed for which i1s the most common pathway.
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There 1s some statistical evidence for CDI pressure, where a concurrent CDI case
elsewhere on a patient’s unit statistically increases that patient’s risk for CDI,
suggesting a direct pathway.
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There 1s also some evidence that a prior CDI case in the same room increases risk
of subsequent CDI, suggesting an environmental pathway.
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There 1s some statistical evidence for CDI pressure, where a concurrent CDI case
elsewhere on a patient’s unit statistically increases that patient’s risk for CDI,
suggesting a direct pathway.

There 1s also some evidence that a prior CDI case in the same room increases risk
of subsequent CDI, suggesting an environmental pathway.

However, some genotyping studies have shown that a substantial number of cases
in the same unit are not genetically related, suggesting an endongenous pathway,
perhaps triggered by overzealous use of antibiotics.
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CDI Pathways

Unfortunately, evidence 1s mixed for which i1s the most common pathway.

There 1s some statistical evidence for CDI pressure, where a concurrent CDI case
elsewhere on a patient’s unit statistically increases that patient’s risk for CDI,
suggesting a direct pathway.

There 1s also some evidence that a prior CDI case in the same room increases risk
of subsequent CDI, suggesting an environmental pathway.

However, some genotyping studies have shown that a substantial number of cases
in the same unit are not genetically related, suggesting an endongenous pathway,
perhaps triggered by overzealous use of antibiotics.

Can we use our UIHC CDI and knowledge of UIHC and its patients to tease
these pathways apart?
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The Big Idea

Given a set of UIHC CDI cases located in space and time, can we determine if
the observed ‘‘clustering” 1is accidental or the result of some underlying

pathway?
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The Big Idea

Given a set of UIHC CDI cases located in space and time, can we determine if
the observed ‘‘clustering” 1is accidental or the result of some underlying
pathway?

Showing the clustering behavior did not occur at random is evidence for other
than endogenous CDI (i.e., a direct or environmental) pathway.
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Theme: Spatiotemporal Context vs. Random Mixing

Traditionally, epidemiologists use random mixing to model disease transmission
(imagine a herd of cows out to pasture, randomly interacting: that’s random
mixing).
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Traditionally, epidemiologists use random mixing to model disease transmission
(imagine a herd of cows out to pasture, randomly interacting: that’s random
mixing).

Random mixing is easy to model!

In contrast, we believe spatiotemporal context matters; that architecture and
human behaviors conspire to regularize, and not randomize, agent mixing, and
that systematic patterns emerge from individual behaviors.
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Theme: Spatiotemporal Context vs. Random Mixing

Traditionally, epidemiologists use random mixing to model disease transmission
(imagine a herd of cows out to pasture, randomly interacting: that’s random
mixing).

Random mixing is easy to model!

In contrast, we believe spatiotemporal context matters; that architecture and
human behaviors conspire to regularize, and not randomize, agent mixing, and
that systematic patterns emerge from individual behaviors.

In that way, we’re not all that different than John Snow, who paced off his
Voronoi boundaries on the map of Soho.
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University of lowa Hospitals and Clinics

The main University of Iowa Hospitals and Clinics (UIHC) complex has 3.2
million sqft on 9+ floors, and 1s over 0.3 miles long along its major axis. The new
14 floor UTHC Children’s Hospital added another 0.5 million sqft.
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The main University of Iowa Hospitals and Clinics (UIHC) complex has 3.2
million sqft on 9+ floors, and 1s over 0.3 miles long along its major axis. The new
14 floor UTHC Children’s Hospital added another 0.5 million sqft.

Construct a graph model consisting of roughly uniform length edges, with rooms
as nodes, and edges representing room adjacency (larger rooms and corridors
were segmented into approximately room-size chunks).
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University of lowa Hospitals and Clinics

The main University of Iowa Hospitals and Clinics (UIHC) complex has 3.2
million sqft on 9+ floors, and 1s over 0.3 miles long along its major axis. The new
14 floor UTHC Children’s Hospital added another 0.5 million sqft.

Construct a graph model consisting of roughly uniform length edges, with rooms
as nodes, and edges representing room adjacency (larger rooms and corridors
were segmented into approximately room-size chunks).

Our UIHC model provides a high-resolution spatial model of proximity and
accessibility, consisting of 19,554 nodes and 23,556 edges representing 3.2
million square feet. We also precomputed and cached all 382,339,362 room-to-
room shortest paths.
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UIHC Model
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UIHC Model

University of Iowa

complepi

computational epidemiology research



UIHC Model
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UIHC Model
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UIHC Model
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UIHC Physical Model

Final graph contains 19,554 nodes and 23,556 edges.

Provides high-resolution spatial model of proximity and accessibility.
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UIHC Physical Model
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Digression: Automated Graph Extraction from CAD Files
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Add HCW Logins to Electronic Medical Record

Combining the spatial model with de-identified Electronic Medical Record
(EMR) login records for the 22 months between 9/1/2006 and 6/21/2008 yields

insight into HCW movement.

records days users job types departments devices locations
19.8 million 660 14,595 404 80 17,522 4 379
login date & time logout date & time device location user 1D job type & department
2006-08-01, 0:00:00.40 2006-09-01, 0:24:17.29 ADDO12 STAFF NURSE |, NURSING
2006-09-01, 0:00:00.43 2006-09-01, 0:00:21.76 MO5089 JPP 6750 AD0029 STAFF NURSE Il, NURSING
2006-09-01, 0:00:01.23 2006-09-01, 0:03:55.21 JO0023 STAFF NURSE Il, NURSING
2006-09-01, 0:00:02.29 2006-09-01, 0:00:14.81 MA1458 RCP 1100 coot12 HOUSE STAFF lll, NEUROLOGY
2006-09-01, 0:00:02.54 2006-09-01, 0:46:37.82 B71118 RCP 1047 MOD018 HOUSE STAFF |, ETC
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UIHC Login Records

19,800,955 login records between 9/1/2006 and 6/21/2008.
22.996 machines.

29,862 users in 91 departments.
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UIHC Login Records
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Inferring Contact Networks from EMR Data

We can easily generate contact networks from these EMR data, using hop
distance d and time interval t as parameters.

Example: Three sample 295 node subgraphs (from 6,875 nodes) for a 4-week
time window (d = 1,t=1; d =3,t =15; and d =35, = 30) starting September
10, 2006.
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Observation: HCW Contacts are Heavy Tailed
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Compared with an Erdos-Rényi random graph having same number of vertices
(n =6,875), edges/average degree (m = 174,739, 6 =50.83) as the inferred
4-week HCW contact graph (d = 3, t = 15) starting on September 10, 2006.

University of lowa

comp)|

computational epidemiology research



UIHC Connectivity

Precomputed 382,339,362 room-to-room shortest paths.

Cost model:

Standard edges 1.0
Corridors 0.8
Elevators 5.0

Stair up 4.0

Stair down 3.0
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UIHC Connectivity
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UIHC Human Resource Data

Obtained job catagories and job types from HR.
Used to augment original job data from logins.

477 jobs assorted into 36 HR job types.
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UIHC Human Resource Data
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Observation: These Data Contain Lots of Information

Using EMR login data based on machine location, we investigated how to infer
HCW distribution models from EMR login data.

Pediatric staff logins centered in 2nd floor pediatric unit (March 2007).
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Observation: Not all HCWs are Created Equal

Job category Average 0.8-radius
CT Service Tech 1.50
Secretary 5.06
Unit Clerk 7.20
Nurse Manager 11.0
Sonographer 13.6
Pharmacy Tech 14.0
Clinical Lab Scientist 16.5
Professor 20.1 Job category | Average 0.8-radius
Social Worker 21.2 House Staff | 35.6
Dietician 21.4 House Staff Il 31.3
Imaging Tech 25.6 House Staff Il 31.8
Respiratory Therapist 25.8 House Staff IV 25.0
House Staff 30.3 House Staff V 29.6

Mobility varies by job type and seniority, with important implications for disease
diffusion.
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Application: Who to Vaccinate?

Simulations based on EMR contact networks can be used to inform practical
decisions during vaccine shortages.

We proposed a mobility-based vaccination strategy, which approximates
omniscient degree-based vaccination strategy and 1s easy to implement in
practice (use a pedometer!).
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UIHC ICD9 Codes

Obtained ICD9 diagnostic and procedure codes from Medicare.
14,614 ICD9 diagnostic codes.

3,877 ICD9 procedure codes.
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UIHC ICD9 Codes
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UIHC ADT Data

Integrated UTHC admission/discharge/transfer data from 2005-2013.

273,285 1npatient records for 160,322 patients including about 500,000 room
transfer entries.

Gives best spatial information about where each patient 1s when.

Additional information about where they came from (LTC?), where they were
discharged from, diagnosis at admission, etc.
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UIHC ADT Data
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UIHC Quality Data

The quality data contain much richer information about the individual patient’s
demographics, diagnoses, procedures, physicians, complications, outcomes and
SO on.
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UIHC Quality Data
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UIHC Pharmacy Data

7,188,703 prescriptions for UIHC patients.
Documents what was prescribed and when/how it was given.

Also contains information about drugs and drug types.
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UIHC Pharmacy Data
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UIHC CDiff Data

Information about CDiff cases at UTHC.
Contains date and time of diagnosis linked to visit.

Also contains which CDiff test was used to confirm diagnosis.
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UIHC CDiff Data
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Digression: This Rich and Diverse Data Set Supports our Research
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With Osteoarthritis, Acute CVD (CCD code 109) 1s the most common admission
diagnostic; 3,992 patients stayed an average of 7.8 days (median 5, max 91).
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