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1 Compartmental Models

Before we analyze Compartmental Models, we must understand the definition and the concept of
Compartmental Models.

Definition 1. Compartmental Models are partitions of a set polulation into different distinct com-
partments. Each individual is one of the listed compartments in the model. Some examples of
distinct compartments are as follows:

1. S → Susceptible

2. E → Exposed

3. M → Immunity from mother

4. I → Infected

5. R→ Resistant

Compartmental Models can be created and used in many unique ways. A couple example
models are SIR, SEIR, SIS, and MSIR. Below is a flow chart of a SIR model.

Consider this visualization of a SIR compartmental model.

Transitions between compartments only go in the direction the arrow is pointing. Individuals
are only allowed to follow the path within the model. i.e, an inidividual cannot go from susceptible
to resistant in one time step.
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2 SIR Model Specification

The SIR Compartmental Model is the model that is easily used and commonly used today. The SIR
model contains a constant population, denoted as N . This population can only be one of the three
states available. The three states that an individual can join are susceptible, infected, or resistant.
Denoted as S, I, or R respectively. An individual cannot be part I and R, each individual can
only be in one compartment at any given time. Time proceeds in discrete steps, also called Time
Steps. (i.e. T = 1,2,...) Along with this, individuals can move to the next compartment in one
time step, but cannot break the progression of the model. (i.e. Individual x cannot go from S to
R in one time step.) Lastly, death is not possible in this model.

All Compartmental Models work in time steps. In every time step, many processes will happen
within the model. For the SIR model, only three actions happen within the model. Each susceptible
individual x will ”contact” another individual y that is chosen uniformly from the population N .
If y is infected, then x has a probability of β to become infected too. Each infected individual has
a probability of γ to become resistant. All individuals who are resistant, stay resistant for the rest
of all time steps.

Below is an updated visualization of a SIR model with β and γ probabilities.

The probability of an infected individual to become resistant over any timestep is proven below.
Let x denote the period of time for an infected person

Prob[x = 1] = γ

Prob[x = 2] = (1− γ)γ

Prob[x = t] = (1− γ)t−1γ)

Therefore Geometric Disturbution

E[x] = 1/γ
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2.1 Example SIR Problem

University of Iowa conducted a SIR computational study with four individuals named A, B, C,
and D respectively. These fictional individuals are contained in a box with A being labeled with I
and B, C, and D labeled as S.The probability β is 1/4 and the probability of γ is 1/3. Find the
probabilty that B gets infected in time state 1 and that no one is infected after time state 1.

Below is the visual representation of the Example SIR Problmem.

Prob[B gets infected in time state 1]= 1/4 ∗ 1/4 = 1/16

Prob[No one is infected after time state 1]= (15/16)3 ∗ 1/3

2.2 Future Populations

Given that we know the populations of each compartment, we must find the future population of
each compartment too. Using the SIR model, we can use γ, β, and the current populations to
find the populations in the next time step. Given that X(t), Y (t), and Z(t) are populations of
susceptible, infected, and resistent at given time step t respectively. Therefore,

X(t) + Y (t) + Z(t) = N

Then we must find X(t+ 1), Y (t+ 1), and Z(t+ 1).

X(t+1)
Let x ε S just before time step t.

Prob[x becomes infected in time step t]= Y (t)/N ∗ β = ((I ′s Pop./Pop)/N) ∗ β

E[No. of susceptible individuals who will become infected in time step t] = X(t) ∗ (Y (t)/N) ∗ β

E[X(t+ 1)] = Y (t) + ((X(t) ∗ Y (t) ∗ β)/N)
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Y(t+1)

E[X(t+ 1)] = Y (t) + ((X(t) ∗ Y (t) ∗ β)/N)− γ ∗ y(t)

Z(t+1)

E[Z(t+ 1)]=Z(t) + γ ∗ Y (t)

Implications for Computation

By assuming that the random variables X, Y , and Z behave exactly like their expectation.
(also known as ”mean field approximation”) We can prove that this approximation is good when
populations are large and actions are independent.

2.3 What Defines an ”Epidemic?”

Over thousands of years, our human population has experienced several epidemics. But what
defines an epidemic? Below, we will computationally find how an epidemic will occur. Please note:
a disease is considered an epidemic even if it infects a very small fraction of the population. (e.g.
0.5%)

When Y (t+ 1) > Y (t)

True when ((X(t) ∗ Y (t) ∗ β)/N)− γ ∗ Y (t) > 0,
→ (X(t) ∗ β)/N − γ > 0

→ β − γ > 0
β/γ > 1

A Key property of a SIR model is that the disease becomes an epidemic if and only β/γ > 1

2.4 Epidemic Curve Graph

All epidemics follow a similar basic curve correlating the ammount of infected people over time. In
the SIR model, the epidemic starts slow, but gradually increases over time till the epidemic hits it’s
peak, then gradually moves back down. This creates an inverted parbola. The peak of the curve
denotes the peak of infection, where the most people are infected. The curve follows this equation
given in class:

Y (t+ 1) = Y (t) + Y (t) ∗ ((X(t) ∗ β)/N − γ)t

2.5 Basic Reproduction Number

Definition 2. The Basic Reproduction Number, denoted as Ro, is the expected number of new
infections caused by a single infection during the early stages of the infection.

Within a SIR model, we can show that:
Ro = β/γ

Consider the situation just before time step 1. Suppose that xεI. Our goal is to find the
expectation of individuals who will be infected by x. To spread the infection, we will create or
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chose an arbitrary yεS.With these individuals, we can find the probability that y will be infected
by x in any time step.

Prob[y will be infected by x in time step 1]= β/N

Prob[y will be infected by x in time step 2]= (1− (β/N)) ∗ (1− γ) ∗ (β/N)

Prob[y will be infected by x in time step t]= ((1− (β/N)) ∗ (1− γ))t−1 ∗ (β/N)

Let δ denote (1− (β/N)) ∗ (1− γ)

Prob[y will be infected by x]=
∑∞

t=1 δ
t−1 ∗ (β/N)

By the Definition of a Geomeric Series, we can get:∑∞
t=1 δ

t−1 = (β/N) ∗ (1/(1− δ))

Therefore the Expectation of number of people infected by x is β ∗ (1/(1− δ)).
Assuming that while N →∞:

(1− (β/N)) ∗ (1− δ)→ 1− δ

Therefore, as N → ∞ the Expectation of number of people infected by x is β/γ. Which
correlates to the probability of infection over the probability of resistance. Along with this, we can
note that to increase Ro, you can increase β or reduce γ. Vice Versa to decrease Ro.

3 Additional Compartmental Models

There are endless amount of different compartmental models that epidemiologists use. But a couple
that will be covered in class at at a later date are: SEIR, SIS, MSIR, etc.

THIS IS A DRAFT AS OF THURS FEB 6TH
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