
Algorithmic Perspective on the
Vaccine Allocation Problem

CS: 4980 Spring 2020
Computational Epidemiology

Tue, Apr 7

Example: Vaccine Allocation problem

Input: Contact network ! = #, % , vaccination budget & > 0

Choice variables:)* ∈ {0, 1} for each / ∈ # ()* indicates if individual / is
to be vaccinated.)

Possible objective function: Expected number of individuals infected by an
infection (e.g., SIR model) that starts at a random individual and spreads on
! with vaccinated individuals removed.

Constraints: ∑* ∈1)* ≤ & (number of vaccines cannot exceed the budget)

Simplified problem: deterministic infection

An infected node infects all susceptible neighbors in the next time step,
after it has become infected.

Implication: if a node in a connected component becomes infected,
then all nodes in that connected component will eventually become
infected.

Example

• Suppose ! = 1

• In post-vaccination contact network:
• If infection source = $ then infection size = 4
• If infection source = % (or & or ') then infection size 2

Example

• Suppose ! = 1

• Expected infection size:

4
10 4 + 2

10 2 + 2
10 2 + 2

10 (2)

Expected Infection Size

• Suppose the original contact network has ! nodes and we vaccinate
(delete) " of these nodes.
• Suppose this yields # connected components of sizes $%, $', $(, … , $*.

• Expected size of infection:

$%
! − " $% + $'

! − " $' + $(
! − " $(+ …+ $*

! − " ($*)

Min Sum-of-Squares Partition (MSSP) problem

INPUT: A graph ! = ($, &), a positive integer (
OUTPUT: A subset) ⊆ V of nodes,) = (, such that if ,-, ,., ,/, … , ,1
are the sizes of the connected components in ! −), then

,-. + ,.. + ,/. + …+ ,1.
is minimum.

Example

• Suppose ! = 1

• If node in red circle is vaccinated:
Expected infection size = 4% + 2% + 2% + 2% = 28

• If node in blue box is vaccinated
Expected infection size = 3% + 7% = 49

Question 1: can you come up with a 2-sentence argument that with ! = 1,
choosing the node circled red is optimal?

MSSP seeks a balanced partition

Given that	
*+ + *- + *. + ⋯+ *0 = 2 − 4

if there were no other constraints on the	*;’s	then

*+- + *-- + *.- + …+ *0-

is minimized at *; = >?@
0 .

How to efficiently solve this problem?

Degree-based heuristic:
Repeatedly vaccinate node with highest degree in the remaining graph until !
nodes are vaccinated

• The performance of the degree-based heuristic can be quite bad.

• ~#$ (degree-based) vs ~%&
$ (optimal).

How to efficiently solve this problem?

• Question 2: Can you come up with other graphs that are even
worse for the degree-based heuristic, making the gap between
degree-based and optimal much worse, say 10 times or 100 times
even?

• Question 3: Other heuristics that seem reasonable to you for
solving this problem?

Bad news: MSSP is NP-hard

• Recall: This means that if we’re able to come up with an efficient
(polynomial-time) algorithm for MSSP, it would imply that many,
many other problems (e.g., SAT, TSP, Minimum Vertex Cover, etc.), will
all have efficient solutions.

• Since the latter is considered extremely unlikely, the MSSP is
extremely unlikely to have an efficient solution.

So what should we do?

Approximation algorithms

For a minimization problem Π, an algorithm " is an #-approximation
algorithm if:
• " runs in polynomial time
• Cost of solution produced by " is at most # times cost of optimal solution.

An approximation algorithm is a “heuristic” that provides a worst-case
guarantee on the gap between its solution and the optimal solution.

Approximation algorithm for MSSP

• Goal: To design an efficient α-approximation algorithm for MSSP for
small ".

• Here is an approach from the paper:

“Inoculation strategies for victims of viruses and the sum-of-squares partition problem”, by
James Aspnes, Kevin Chang, Aleksandr Yampolskiy, SODA 2005, pp 53-52.

Graph Partition problems

• Graph Partitioning problems (either via edge removal or node removal)
have been studied for decades by the CS community.

• Applications:
• VLSI design
• Parallel computing
• Social network analysis
• Vaccination allocation

Most graph partitioning problems are NP-hard and are solved by heuristics
or by approximation algorithms.

Example: Minimum Cut (MinCut)

INPUT: A graph ! = #, %
OUTPUT: A partition &, # − & (aka “cut”) such that the number of
edges between & and # − & is fewest.

S V - S
• We are looking for a non-trivial solution; so & ≠ ∅ and
− & ≠ ∅.

• This is the “edge version” of the problem because we
remove edges to partition the graph.

• An optimal solution in this example has size 2.

Example: Minimum Cut (MinCut) node version

INPUT: A graph ! = #, %
OUTPUT: A partition #&, ', #(such that there are no edges between
#& and #(and the size of ' is smallest.

A B C

D E F

Solution needs to be non-trivial, i.e., #& ≠ ∅ and
#(≠ ∅.

Question 4: What is the minimum node cut in this
example?

Algorithms for MinCut

• Both the edge version and the node version of MinCut can be solved
efficiently (i.e., in polynomial time).

• This is one of the success stories of algorithm
design; one way to solve MinCut is by using
network flows.

Example: Sparsest Cut (SparseCut)

Definition: Given a graph ! = ($, &) and a cut ((, $ − (), the
sparsity of the cut (, $ − (is

* (= |& (, $ − (|
(×|$ − (|

Numerator: number of edges that go between (and $ − (.
Denominator: maximum possible edges between (and $ − (.

*((./0) =
2
4×4 =

1
8

*((5/6789) =
3
1×7 =

3
7

Example: Sparsest Cut (SparseCut)

INPUT: A graph ! = #, %
OUTPUT: A cut &, # − & of smallest sparsity (& .

Question 5: Intuitively, what is the difference between the MinCut and
the SparseCut problems?
(Hint: Think about the two problems on a path.)

Example: Sparsest Cut (SparseCut) node version

INPUT: A graph ! = #, %
OUTPUT: A partition (#', (, #)) of such that

|(|
(#' + |(|2)×(#) + (

2)
is minimized.

Question 6: Consider a 5 node path. What is sparsity of the optimal node cut?

Algorithms for SparseCut

• While MinCut has an efficient algorithm, SparseCut is NP-hard.

• But, SparseCut is a relatively old problem and it has a well-known
!(log &)-approximation algorithm due to Leighton and Rao (JACM
1999).

Question 7: What does an !(log &)-approximation even mean?

Algorithm for MSSP via a SparseCut algorithm

• A good approximation algorithm for MSSP can be obtained by greedily using
a good approximation algorithm for SparseCut.

• A good solution to SparseCut
• places “few” nodes in !
• and “balances” |#$| and |#%|

• So we add ! to our set of to-be
vaccinated nodes.

• Balancing |#$| and |#%| has the effect of minimizing |#$|% + |#%|%.

MSSP Algorithm: High-level overview

After the algorithm has proceeded for some iterations, we have:
• a set !′of nodes already set aside for vaccination,
• and connected components #$,#&, … , #(of) − !+

Next iteration:
1. Find sparsest cut ,- for each #-, . = 1, 2, … , 2.
2. Discard each ,-: !+ + ,- is too big, relative to !
3. For among the remaining ,-′6, add to !′ the ,- that is most cost-

effective.
4. Replace #- by the connected components of # − ,-

MSSP Result

Theorem: This is an ! (log &)(-approximation algorithm for the MSSP
problem.

Advanced approaches

For the general problem of probabilistic SIR-type models, spectral
methods, i.e., methods from linear algebra have been successful.

Thanks for your attention.

Any questions?

