1. (a) Prove that \(n = o(n \log n) \).

Solution: We need to show that for every \(c > 0 \), there exists an \(n_0 > 0 \) such that \(0 \leq n < cn \log n \) for all \(n \geq n_0 \). This is equivalent to showing that for every \(c > 0 \), there exists \(n_0 > 0 \) such that \(0 \leq 1/c < \log n \). For each \(c > 0 \), pick \(n_0 > 2^{1/c} \). Then, for all \(n \geq n_0 \), we have that \(n > 2^{1/c} \), which is equivalent to saying that \(\log n > 1/c \).

A simple alternate solution is obtained by using limits.

(b) Let \(a \) and \(b \) be strictly positive constants. Express the sum

\[
S_n = \sum_{i=0}^{\log_b n} \left(\frac{a}{b} \right)^i
\]

in \(\Theta \)-notation as simply as possible. In other words, find an \(f(n) \) that is as simple as possible such that \(S_n = \Theta(f(n)) \). Using your answer, point out the error in my solution to Problem 4(a) in Homework 2.

Solution:

Case 1: \(a = b \) \(S_n = \sum_{i=0}^{\log_b n} 1 = \Theta(\log n) \).

Case 2: \(a < b \)

\[
1 < S_n < \frac{1}{1 - \frac{a}{b}} = \frac{b}{b-a}.
\]

Therefore, \(S_n = \Theta(1) \).

Case 3: \(a > b \)

\[
S_n = \sum_{i=0}^{\log_b n} \left(\frac{a}{b} \right)^i = \frac{\left(\frac{a}{b} \right)^{\log_b n+1} - 1}{\left(\frac{a}{b} \right) - 1} = \Theta \left(\left(\frac{a^b}{b} \right)^{\log_b n} \right) = \Theta \left(\frac{n^{\log_b a}}{n} \right) = \Theta \left(n^{\log_b a - 1} \right).
\]

In the homework solution the cases in which \(a < b \) and \(a > b \) were not distinguished. However, they ought to be distinguished since the sums in these two cases are asymptotically different and as a result the solution to the recurrence in Problem 4(a) is different in these two cases. When \(a < b \), the solution is \(T(n) = \Theta(n) \) and when \(a > b \), the solution is \(T(n) = \Theta(n^{\log_b a}) \).

2. (a) Solve the following recurrence for \(T(n) \) using your favorite method.

\[
T(n) = 2T \left(\frac{n}{4} \right) + n\sqrt{n}.
\]
Assume that the recurrence holds for \(n > 1 \) and \(T(n) = \Theta(1) \) for \(n \leq 1 \).

Solution: Use the Master Theorem. So we have \(a = 2 \), \(b = 4 \), and therefore \(n^{\log_b a} = n^{1/2} \).

Also \(f(n) = n\sqrt{n} = n^{3/2} \). We now check if Case (iii) applies. For any \(\epsilon, 0 < \epsilon \leq 1 \),

\[
 n^{3/2} = \Omega(n^{1/2+\epsilon})
\]

We now test the regularity condition.

\[
 af\left(\frac{n}{b}\right) = 2f\left(\frac{n}{4}\right) = 2 \cdot \frac{n}{4} \cdot \sqrt{\frac{n}{4}} = \frac{n\sqrt{n}}{4} = \frac{f(n)}{4}.
\]

This verifies the regularity condition; Case (iii) applies and hence \(T(n) = \Theta(n\sqrt{n}) \).

(b) Solve the recurrence

\[
 T(n) = \frac{1}{n} \sum_{k=1}^{n-1} T(k) + n
\]

using the substitution method. Assume that the recurrence holds for all \(n > 1 \) and \(T(1) = 1 \).

Use \(T(n) \leq cn^2 \) for all \(n \geq n_0 \) as your guess. Identify specific values for \(c \) and \(n_0 \) for which the guess holds.

Solution: Choose \(n_0 = 1 \).

Base Case: We need to show that \(T(1) \leq c \cdot 1^2 \). Choosing \(c \geq T(1) = 1 \) ensures this.

Inductive Hypothesis: For all \(k, 1 \leq k < n \), \(T(k) \leq ck^2 \).

Inductive Step: Substituting the inductive hypothesis in the given recurrence relation we get

\[
 T(n) \leq \frac{3}{n} \sum_{k=1}^{n-1} ck^2 + n
\]

\[
 = \frac{3c}{n} \left(\frac{n(n-1)(2n-3)}{6} \right) + n
\]

\[
 = \frac{c}{2} (n-1)(2n-3) + n
\]

\[
 = cn^2 - \frac{5cn}{2} + \frac{3c}{2} + n
\]

For this quantity to be at most \(cn^2 \), we need that

\[
 \frac{-5cn}{2} + \frac{3c}{2} + n \leq 0.
\]

This is true for all \(c \geq 1 \) and \(n \geq 1 \). So choosing \(c = 1 \) makes both the inductive case and the base case go through.

3. (a) Here is an algorithm that computes \(y^z \), given \(y \) and \(z \).

```java
Power(y, z) {
    if (z == 0) then
        return 1;
    else if (isOdd(z)) then
        return Power(y^2, [z/2]) * y;
    else if (isEven(z)) then
        return Power(y^2, [z/2]);
}
```

Here `isOdd(z)` returns `True` if \(z \) is odd; `False` otherwise. Similarly, `isEven(z)` returns `True` if \(z \) is even; `False` otherwise.
Analyze the above algorithm to determine the amount of time it takes to compute 5^n. Do this by setting up a recurrence and solving the recurrence.

Solution: Let $T(n)$ be the time the algorithm takes to compute 5^n. The following recurrence is immediate on examining the pseudocode of the algorithm

$$T(n) = T \left(\frac{n}{2} \right) + \Theta(1).$$

The recurrence holds for $n \geq 1$ and $T(0) = \Theta(1)$. This is identical to the “binary search recurrence” and solves to $T(n) = \Theta(\log n)$.

(b) Analyze the following function and determine its running time. Express your answer in Θ-notation.

```plaintext
Strange(n) {
    for i ← 1 to n do
        if IsPerfectSquare(i) then
            for j ← i to i do
                print (i, j);
}
```

The function call `IsPerfectSquare(i)` returns `True` if i is a perfect square (that is, $i = x^2$ for some integer x); `False` otherwise.

Solution: Lines 1-2 contribute $\Theta(n)$ to the running time. To calculate the contribution of Lines 3-4 note that for every perfect square i, $1 \leq i \leq n$, Lines 3-4 contribute $\Theta(i)$ to the running time. So the total contribution of Lines 3-4 is $\sum \Theta(i)$, where the summation is over all perfect squares i, $1 \leq i \leq n$. This sum can be alternately written as

$$\sum_{x=1}^{\lfloor \sqrt{n} \rfloor} \Theta(x^2) = \Theta((\sqrt{n})^3) = \Theta(n\sqrt{n}).$$

Hence the total running time of all the lines is $\Theta(n\sqrt{n})$.

4. (a) Let $X = x_1, x_2, \ldots, x_n$ be a sequence such that $x_1 > x_2 > \cdots > x_n$. What is the running time of following piece of code?

```plaintext
for i ← 1 to n do
    INSERT(H, x_i);
```

Assume that H is an empty heap before the above code is executed. Briefly justify your answer.

Solution: The running time is $\Theta(n)$.

Explanation: When x_i is inserted, H contains $i - 1$ elements. Placing x_i in slot i of H creates a heap of size i without any rearrangement of the elements. This is because x_i is the smallest element in the heap and is therefore smaller than its parent. So each insertion takes $\Theta(1)$ time for a total of $\Theta(n)$ for all the insertions.

(b) Write pseudocode for an algorithm that finds the kth smallest element in an array $A[1..n]$ in $\Theta(n \log k)$ worst case time. Use the heap data structure to do this.

Solution:

```plaintext
KSmallest(A[1..n]){
    H ← empty heap;
```
2. for $i \leftarrow 1$ to k do
 INSERT(H, A[i]);

3. for $i \leftarrow k + 1$ to n do
 if (A[i] < MAX(H)) then
 EXTRACT-MAX(H);
 INSERT(H);

5. (a) Show how the PARTITION function, as described in your textbook, would work on the following sequence of numbers:

 7, 8, 11, 2, 18, 9, 1, 3, 10.

 Show how the array would look at the beginning of each execution of the while-loop. Clearly show where the indices i and j are pointing to.

 Solution:

 \[
 \begin{array}{cccccccccc}
 i & 7 & 8 & 11 & 2 & 18 & 9 & 1 & 3 & 10 \\
 3i & 8 & 11 & 2 & 18 & 9 & 1 & 7j & 10 \\
 3 & 1 & 2i & 11j & 18 & 9 & 8 & 7 & 10 \\
 3 & 1 & 2j & 11i & 18 & 9 & 8 & 7 & 10 \\
 \end{array}
 \]

(b) Suppose that the input QUICKSORT is an array of n elements that contains c distinct elements, for some positive constant c. Describe how PARTITION would have to be modified so that QUICKSORT has a worst case running time $\Theta(n \log n)$.

 Notes: You do not have to write pseudocode; write down each modification you would make to PARTITION and then write a brief explanation as to why QUICKSORT will have a worst case running time of $\Theta(n \log n)$.

 Solution: Start with the PARTITION described in Problem 5, Homework 4 and modify it as follows.

 - Start by scanning the array and record in an array $B[1..c]$ each distinct element in A. This takes $\Theta(n)$ time.
 - Attempt to partition the array at most c times, using each of the elements $B[i], 1 \leq i \leq c$, as a pivot. Since c is a constant, this amounts to making $\Theta(1)$ attempts. Each attempt takes $\Theta(n)$ time, for a total of $\Theta(n)$ time.
 - Recall that the PARTITION code described in Homework 4 computes two indices q and r such that $A[q+1..r]$ is the middle block containing elements, all equal to the pivot. Compute the index that points to the middle of the middle block: $[(q + r + 1)/2]$ and check if this index points to the middle of the whole array (i.e., $[(p + s)/2]$). If so, the partitioning attempt stops; otherwise the next distinct element is used as a pivot.

The modified partition returns an index that points to the middle of the array. This means that the running time of the function is given by the recurrence $T(n) = 2T(n/2) + \Theta(n)$. This in turn implies that the running time of the function is $\Theta(n \log n)$.

4