Each problem is worth 10 points.

1. The problem is to take a given set of activities (intervals) and schedule these in the fewest number of rooms so that activities assigned to each room are mutually compatible. More precisely, the input is a set \(A = \{a_1, a_2, \ldots, a_n\} \) of intervals, where, for each \(i \), \(a_i = [\ell_i, r_i) \) such that \(\ell_i < r_i \). The output that is sought is the smallest collection \(\{C_1, C_2, \ldots, C_k\} \) of sets of intervals \(C_i \) such that \(\bigcup_{i=1}^{k} C_i = A \) and for each \(i \), \(C_i \) contains mutually compatible intervals. Consider the following greedy algorithm for this problem:

\[
\text{GreedyActivityScheduling}(A) \{
\text{Sort the activities in } A \text{ by increasing right endpoint and label the} \\
\text{intervals } a_1, a_2, \ldots, a_n \text{ in order.} \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\text{Find the smallest } j \text{ such that } a_i \text{ is compatible with every} \\
\text{interval in } C_j \text{ and add } a_i \text{ to } C_j;
\}
\]

Prove the correctness of this algorithm.
\textbf{Hint:} Proceed as follows. Suppose that the answer produced by the algorithm is \(\{C_1, C_2, \ldots, C_k\} \). Show that there is a point \(x \) and \(k \) intervals \(a_{i_1}, a_{i_2}, \ldots, a_{i_k} \) such that \(x \in a_{i_j} \) for each \(j = 1, 2, \ldots, k \). This means that any pair of the intervals in \(\{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\} \) are mutually incompatible. This means that each of these has to be assigned to a distinct set \(C_i \). That in turn means that any solution to the problem contains at least \(k \) sets of intervals. Since we have a solution with \(k \) sets, it is optimal.

2. Consider the problem of finding a maximum size independent set in an arbitrary graph. Prove or disprove the correctness of the following greedy algorithm.

\[
\text{GreedyMaximumIndependentSet}(G) \{
S \leftarrow \emptyset; \\
\text{while } (G \text{ has at least one vertex}) \text{ do } \{ \\
\text{Find a vertex } v \text{ with minimum degree;} \\
S \leftarrow S \cup \{v\}; \\
\text{Delete from } G \text{ the vertex } v \text{ and all neighbors of } v;
\}
\text{return } S;
\}
\]

3. The graph coloring problem is to find a smallest set \(S \) of colors such that when each vertex of the given graph \(G \) is assigned a color from \(S \), no two neighboring vertices are assigned the same color. A given graph can be greedily colored as follows. Suppose that the palette of colors we want to use is \(\{1, 2, 3, \ldots\} \). Process the vertices in any order and to each vertex assign the smallest available color.

(a) Prove that if the given graph \(G \) has maximum vertex degree \(\Delta \), the above algorithm will use at most \((\Delta + 1)\) colors.

(b) Draw a tree that needs 3 or more colors if we color it using the above greedy algorithm. Briefly describe the running of the algorithm, with emphasis on why it needs more than 2 colors.

(c) Show a coloring of the above tree that uses only two colors.
4. Problem 17.3-2 on page 344.

5. Problem 23.2-7 on page 476.
 Hint: The diameter of an arbitrary graph can be computed in \(\Theta(|V|(|V|+|E|)) \) time by performing \(|V|\) breadth-first-search operations, one at each vertex. In a tree \(|E| = |V| - 1\) and therefore this simplifies to \(\Theta(|V|^2) \). However, by paying attention to the fact that the given graph is a tree the problem can be solved in \(\Theta(|V|) \) time. In particular, you only need to do 2 breadth-first-search operations.