22C:44 Homework 1
Due by 5 pm on Tuesday, 2/13

1. Consider the following “strange” function:

\[
\text{Strange}(n) \{
\text{for } i \leftarrow 1 \text{ to } n \text{ do}
\quad \text{if } (n \mod i == 0) \text{ then}
\quad \quad \text{for } j \leftarrow 1 \text{ to } n \text{ do}
\quad \quad \quad \text{print}(i, j);
\}
\]

(a) [5 points] Your friend who took 22C:44 last semester tells you that the running time of \text{Strange}(n) is \(\Theta(n^2)\). Disprove her claim.

(b) [5 points] Your elder brother who took 22C:44 about 3 years ago claims that the running time of \text{Strange}(n) is \(\Theta(n)\). Disprove his claim.

(c) [3 points] Use the Big-Oh and Big-Omega notation respectively, to express asymptotic upper and lower bounds on the running time of \text{Strange}(n). Make these bounds as tight as possible.

2. Consider the following “stranger” function:

\[
\text{Stranger}(A[1..n], i)\{
\quad \text{Define } j;
\quad \text{if } (i == (n+1)) \text{ then}
\quad \quad \text{print}(A)
\quad \text{else}
\quad \quad \text{for } j \leftarrow i \text{ to } n \text{ do }
\quad \quad \quad \text{swap}(A, i, j);
\quad \quad \text{Stranger}(A, i + 1);
\quad \quad \text{swap}(A, i, j);
\}
\]

Here the calls to \text{swap}(A, i, j) swap the elements \(A[i]\) and \(A[j]\).

(a) [5 points] Assuming that \(A\) is an array of \(n\) elements and \(i\) is an integer satisfying \(1 \leq i \leq n + 1\), let \(T(n - i + 1)\) denote the running time of a call to the function \text{Stranger}(A, 1). Set up the recurrence relation for the running time of the function call \text{Stranger}(A, 1) for an \(n\)-element array \(A\).

(b) [5 points] Solve the above recurrence and determine the running time of \text{Stranger}(A, 1), asymptotically.

(c) [2 points] Despite appearances to the contrary, \text{Stranger} does something reasonable, especially when called as \text{Stranger}(A, 1) where \(A\) contains the sequence 1, 2, \ldots, \(n\). Explain in a sentence what the function \text{Stranger} does.

3. Let us investigate the problem of sorting arrays \(A[1..n]\) that are known to be almost ordered initially in the sense that only some elements close to each other may be in the wrong order. More precisely, there exists a constant \(c\) (independent of \(n\)) such that whenever two elements \(A[i]\) and \(A[j]\) are in the wrong order then \(|j - i| \leq c\). Suppose that such an almost sorted array is given as input to the \text{MergeSort} function.
(a) [5 points] Modify the \texttt{Merge} function so that it runs in $\Theta(1)$ time.

(b) [5 points] Let $T(n)$ be the running time of \texttt{MergeSort} on an array of size n. Rewrite the recurrence relation for $T(n)$ and solve it to determine the new running time of \texttt{MergeSort} in Θ-notation.

4. Solve the following recurrence relations using the \textit{iteration method}. For each problem, assume that $T(n) = \Theta(1)$ for $n \leq 1$ and $T(n)$ for $n > 1$ is given below.

(a) $T(n) = aT(n/b) + \Theta(n)$. Here a and b are positive integers.

(b) $T(n) = 5T(n/5) + n^2$.

(c) $T(n) = T(n/2) + T(n/3) + n$.

(d) $T(n) = T(n - 2) + 7$.

(e) $T(n) = nT(n - 1) + 1$.

For Part (a), you may have to consider the cases $a > b$, $a = b$, and $a < b$ separately.

Each part is worth 3 points.