Solutions to Homework 9

22C:044 Algorithms, Fall 2000

1 First we use BFS algorithm to compute the distances from an arbitrary
source node \(s \) to all nodes. (If the graph is not connected this would be
repeated with different source nodes until all vertices have been found.
In the pseudocode below I assume that the graph is connected.) Then
we verify that each edge connects two vertices whose distances have
different parities, that is, one end point has even distance to \(s \) and the
other end point has odd distance to \(s \).

Bipartite(G)
1. BFS(G,s) where \(s \) is an arbitrarily chosen vertex
2. for all \(u \in V \) do
3. for all \(v \in \text{Adj}[u] \) do
4. if \(d[u] + d[v] \) is even then return FALSE
5. return TRUE

2(a) A straightforward algorithm based on the definitions uses BFS to com-
pute the eccentricities of the vertices. All vertices are tried one after
the other as the source \(s \) of the search (loop on lines 4–9). Each time,
the maximum value of \(d[v] \) gives the eccentricity of the source. We find
the minimum eccentricity among all sources \(s \), and print out all nodes
that have that eccentricity. The eccentricities of all vertices are stored
in array Ecc[..]:

Centers(G)
1. Allocate array Ecc
2. for every \(s \in V \) set Ecc[s] \(\leftarrow \) 0
3. \(\min \leftarrow \infty \)
4. for every \(s \in V \) do
5. begin
6. BFS(G,s)
7. for every \(v \in V \) do if \(d[v] > \text{Ecc}[s] \) then Ecc[s] \(\leftarrow \) d[v]
8. if Ecc[s] < \(\min \) then \(\min \leftarrow \text{Ecc}[s] \)
9. end
10. for every \(v \in V \) do if Ecc[v] = \(\min \) then print \(v \)
2(b) We first select an arbitrary node s as the source and execute a BFS search to record the distances of all nodes from s. Let v be a node that has the longest distance to s. It is fairly obvious that v is the endpoint of a maximum length simple path in the tree. Therefore, we execute a second BFS search using v as the source node to record the distances of all nodes from v, and to construct shortest paths from v to all nodes. Let u have a maximum distance. The center(s) is (are) the middle point(s) of a shortest path connecting u and v:

TreeCenters(G)
1. Choose arbitrary $s \in V$
2. BFS(G, s)
3. find v with maximum $d[v]$ value
4. BFS(G, v)
5. find u with maximum $d[u]$ value
6. set $x \leftarrow u$
7. for \(\lfloor d[u]/2 \rfloor \) times do $x \leftarrow \pi[x]$
8. if $d[u]$ is even then return x
9. else return x and $\pi[x]$

3 The program code is given on the internet site. The output of the program (after 8 hours on a 650 MHz Pentium!) is as follows:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.382</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.397</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.425</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.363</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.376</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.396</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.413</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.382</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.455</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.483</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Clearly increasing the probability p for fixed n increases the number of edges in the graph, and therefore the probability that the graph is connected increases. Also if p is fixed then increasing n introduces more edges because the average number of edges per node is pn. This also increases the probability that the graph is connected. According to this experiment it seems that probability $p = \ln(n)/n$ is the threshold between connected and unconnected graphs.