Solutions to Homework 5

22C:044 Algorithms, Fall 2000

1(a) Let n be the number of elements in the input array. On the first call to
Random a random number is selected among n possible numbers. On
the second call, one number among remaining n—1 numbers is selected,
and so on. All in all, the program has

nl=n(n—1)(n—2)...

possible choices to behave. This number is the same as the total number
of different permutations of the array. Each permutation is a possible
outcome of the algorithm, therefore each permutation is produced by
a unique sequence of random choices, and has probability 1/n!.

1(b)-(d) See the enclosed program file.

1(e) Here are the outputs of the algorithms:
01d QuickSort : 50644.5, 194705.1, 442027.8, 782592.9, 1217313.1,
1744565.6, 2391603.8, 3092663.2, 3910503.2, 4874686.0, 5916152.8,
6927976.0, 8226759.2, 9502844.8, 10903734.4, 12381534.4, 14057915.2,
15735019.2, 17440283.2, 19458699.2
New QuickSort : 4000.1, 8042.0, 12124.0, 16092.8, 20118.2,
24158.3, 28165.1, 32218.8, 36288.6, 40296.0, 44292.8, 48237.3,
52434.0, 56493.9, 60394.8, 64555.5, 68521.1, 72540.9, 76672.3,
80618.7

According to theory, the complexity of the original quicksort algorithm
should be ©(n?) because the "almost sorted” arrays are worst-case in-
stances to quicksort: the partition is always unbalanced with at most
¢ elements in the lower part. Indeed, the ratios of the numbers of com-
parisons above divided by n? are

0.202578, 0.194705, 0.196457, 0.195648, 0.194770, 0.193841,
0.195233, 0.193291, 0.193111, 0.194987, 0.195575, 0.192444,
0.194716, 0.193936, 0.193844, 0.193461, 0.194573, 0.194259,



0.193244, 0.194587

that is, they are near constant 0.2. In other words, it seems that
T(n) =~ 0.2n%.

The complexity of the new algorithm should be ©(n). The ratios of
the numbers of comparisons to n are 8.00020, 8.04200, 8.08267,

8.04640, 8.04728, 8.05277, 8.04717, 8.05470, 8.06413, 8.05920,
8.056324, 8.03955, 8.06677, 8.07056, 8.05264, 8.06944, 8.06131,

8.06010, 8.07077, 8.06187
These are also near constant at 8, so T'(n) ~ 8n.

The algorithm maintains a heap of k elements, containing the largest
unprocessed element from each input array. The root of the heap is
always the largest unprocessed element in all the arrays. It is removed
from the heap and moved to the merged list. It is replaced in the heap
by the next largest element from the same input list that contained the
old root. Then the root is heapified, and the process is repeated.

Let us start a new run at every element that is smaller than the previous
element in the array. Finding runs this way takes ©(n) time. The runs
are sorted arrays, so using the result from (a) the runs can be merged
in ©(nlogk) time.

If we divide the array into blocks of three elements then the array is
guaranteed to contain at least

2% |([n/3] = 1)/2—1] > 2((n/3—1)/2—2) =n/3 -5

elements that are smaller than the median of the medians of the 3-
blocks. So there are at most 2n/3 + 5 elements in both parts after the
partitioning. We obtain the recurrence

T(n) <T(n/3+1)+T(2n/3+5)+0O(n)

for the running time of the selection algorithm. This recurrence does
not give the linear time complexity we obtained when 5-blocks were
used. On the other hand, this recurrence does not prove the time
complexity would not be linear, either. Solving the recurrence (which
was not required in the exercise) gives T'(n) = O(nlogn). This does
not mean that 7'(n) can not be also O(n). ..



