
CS:4310 Midterm Exam, Fall 2021

Your answers will be graded primarily for correctness, but clarity, precision, and conciseness will
also be important.

1. In the divide step, Algorithm A starts by doing some work that results in five subproblems,
each having size one-half of the size of the original problem. Algorithm A then recursively
solves the five subproblems (in the conquer step) and combines the solutions of these
subproblems to get a solution to the original problem. The divide and combine steps of
Algorithm A run in log n time, where n is the input size of the problem.

(a) Write the recurrence for the running time T (n) of Algorithm A on input of size n.
There is no need to specify base cases.

(b) The Master Method cannot be directly used to solve this recurrence, but you can
use the Master Method to obtain good upper and lower bounds on T (n). Use the
Master Method to obtain functions f(n) and g(n) such that T (n) = Ω(f(n)) and
T (n) = O(g(n)). Show all your work.

2. Here is a function called Unusual that appears in our textbook.

Find the asymptotic running time of this function. Show all your work.

3. Suppose you are given two sets of n points, one set {p1, p2, . . . , pn} on the vertical line y = 0
and the other set {q1, q2, . . . , qn} on the vertical line y = 1. Create a set of n line segments
by connecting each point pi to the corresponding point qi. We now want to compute the
number of pairs of these line segments that intersect. Let us call this the Line Segment
Intersection (LSI) problem.

You have already solved a problem – let us call this the Mystery problem – that is just
the LSI problem in disguise. In 3-4 sentences, describe an O(n log n) time algorithm for
LSI, by reducing LSI to the Mystery problem. In other words, your solution should have
3 parts:

(i) How we can efficiently translate the input of LSI to the input of the Mystery problem,

(ii) How we can efficiently solve the Mystery problem, and

(iii) How we can take the solution of the Mystery problem and use it to obtain the solution
of LSI.

Part (ii) is trivial, since we have already solved the Mystery problem and you should just
say so.

4. Here is a recurrence describing the solution of a problem P (i, j), for i = 2, 3, . . . ,m and
j = 1, 2, . . . , n− 1 in terms of smaller versions of the same problem:

OPT (i, j) = min

{
minj+1≤p≤n OPT (i, p) + 1,

min1≤q≤i−1 OPT (q, j) + 10,

1



The bases cases of this problem are P (1, j) for j = 1, 2, . . . , n and P (i, n) for i = 1, 2, . . . ,m
and it takes O(1) time to solve each of these base cases.

Suppose we define a memoization data structure Table[1..m, 1..n] to store the solutions
to all problems P (i, j).

(a) What is the order in which you will fill Table? Justify your answer in 1 sentence.

(b) What is the running time of an iterative algorithm that completely fills Table? Justify
your answer in 1-2 sentences.

5. You are given matrices A1, A2, . . . , An and you want to compute the matrix product

A1 ×A2 × · · · ×An.

Each matrix Ai has dimensions mi−1×mi. Note that the product is a matrix of dimensions
m0 ×mn.

Because matrix multiplication is associative, one can perform the multiplications in any
order. However, different multiplication orders can have very different costs. Recall that
multiplying an a × b matrix and a b × c matrix in the elementary fashion takes a · b · c
multiplications and we will use this as a measure of the cost of multiplying the matrices.
For example, suppose that A1 has dimensions 50 × 20, A2 has dimensions 20 × 1, and
A3 has dimensions 1 × 10. Then multiplying in the order (A1 × A2) × A3 will have cost
50 ·20 ·1+50 ·1 ·10 = 1000+500 = 1500. This is because we first multiply A1×A2 and this
has cost 50 · 20 · 1 = 1000. Then we multiply a 50× 1 matrix (the product of A1 and A2)
with a 1× 10 matrix (A3) and this has an additional cost 50 · 1 · 10 = 500. Now note that
multiplying in the other order, i.e., A1× (A2×A3) has cost 20 · 1 · 10 + 50 · 20 · 10 = 10200.
From this example it should be clear that performing A1 × A2 first, before the other
multiplication, is much cheaper than the other option of multiplying A2 ×A3 first.

This problem has you construct a dynamic programing algorithm that takes as input
the matrix dimensions m0,m1, . . . ,mn and finds the cost of a cheapest ordering of the
multiplications. Note that your algorithm is not actually multiplying the matrices, just
figuring out the order in which the matrices are to be multiplied.

Let MinCost(i, j) denote the cost of the cheapest order of multiplying Ai×Ai+1×· · ·×Aj

for 1 ≤ i < j ≤ n. Write a recurrence expressing MinCost(i, j) in terms of costs of
cheapest multiplication orderings for smaller subproblems and identify base cases.

2


