1. For each $k = 2, 3, \ldots$, we define a graph G_k as follows. Let $n = k!$. Start with a subset U containing n vertices labeled u_1, u_2, \ldots, u_n. We will add to the graph other vertices and edges so that the degree of each vertex in U ends up being k. Now add to the graph, k subsets of vertices V_1, V_2, \ldots, V_k, where $|V_j| = n/j$ for each j, $1 \leq j \leq n$. Now we will describe the edges incident on each vertex in V_j. Consider the n/j vertices in V_j in some order. Connect the first vertex in V_j to vertices u_1, u_2, \ldots, u_j, then the second vertex in V_j to $u_{j+1}, u_{j+2}, \ldots, u_{2j}$, then the third vertex in V_j to $u_{2j+1}, u_{2j+2}, \ldots, u_{3j}$, and so on. Thus every vertex in V_j has degree j and every vertex in U is connected to exactly one vertex in V_j, for any j.

(a) Carefully draw and label the graph G_3.

(b) Now consider the Minimum Vertex Cover (MVC) problem and a simple greedy algorithm for the problem. You’ve encountered MVC in Reading Response 5. The greedy algorithm I want you to consider, which I will call GreedyDegreeBased is this: repeatedly pick a vertex that covers the most, as yet uncovered edges. This algorithm continues until all edges are covered. Execute this algorithm on G_3 with the following tie-breaking rule: whenever there is a tie between two or more vertices, your algorithm should choose a vertex from $\bigcup_{j=1}^{k} V_j$, rather than a vertex from U. It does not matter how ties are broken between pairs of vertices in $\bigcup_{j=1}^{k} V_j$ or between pairs of vertices in U. What is the vertex cover produced by the algorithm in G_3? What is an optimal vertex cover for G_3?

(c) Your friend claims that the GreedyDegreeBased algorithm is a 3-approximation algorithm. What is the smallest member of the family of graphs G_k defined above that you could use as a counterexample to disprove your friend’s claim? Justify your answer in 1-2 sentences.

Note: Here it may help you to know that $\sum_{i=1}^{10} 1/i$ is approximately 2.93 and $\sum_{i=1}^{11} 1/i$ is approximately 3.02.

2. Consider the “Shortest Interval first” greedy algorithm for the Interval Scheduling problem. (The problem discussed in Section 4.2 “Scheduling Classes” is usually called the Interval Scheduling problem.) In this algorithm, we repeatedly pick a shortest interval to include in our solution and as usual when an interval I is picked, then I and any overlapping intervals still present are deleted. The algorithm breaks ties arbitrarily; in other words, if there are multiple shortest intervals present, the algorithms picks one arbitrarily. By solving this problem, you will be showing that the “Shortest Interval first” greedy algorithm is a 2-approximation algorithm.

(a) Let A be the set of intervals returned by the algorithm for some input and let O be an optimal solution for this input. Prove that every interval in A overlaps at most two intervals in O.

(c) Consider an arbitrary input and let A be the set of intervals returned by the algorithm for this input and let O be an optimal solution for this input. Now for each interval x in O, charge $\$1$ to an interval y in A that overlaps x. Note that y could be identical to x. Also, note that y has to exist; otherwise the greedy algorithm would have added x to the set A. Thus the number of dollars charged is exactly equal to $|O|$. Now answer the following questions: (i) what is the maximum number of dollars that an interval in A is
charged? (ii) what does this tell us about the relative sizes of \(A \) and \(O \)? (Express your answer as an inequality connecting \(|A|\) and \(|O|\)), and (iii) what does this tell us about the “shortest interval first” algorithm being an approximation algorithm for Interval Scheduling?

3. The Bin Packing problem takes as input an infinite supply of bins \(B_1, B_2, B_3, \ldots \), each bin of size 1 unit. We are also given \(n \) items \(a_1, a_2, \ldots, a_n \) and each item \(a_j \) has a size \(s_j \) that is a real number in the interval \([0, 1]\). The Bin Packing problem seeks to find the smallest number of bins such that all \(n \) items can be packed into these bins.

For example, suppose that we are given 4 items \(a_1, a_2, a_3 \) and \(a_4 \) of sizes 0.5, 0.4, 0.6, and 0.5 respectively. We could pack \(a_1 \) and \(a_2 \) in bin \(B_1 \) because \(s_1 + s_2 = 0.9 \leq 1 \). We could then pack \(a_3 \) into bin \(B_2 \), but we could not also add \(a_4 \) to bin \(B_2 \), because \(s_3 + s_4 = 1.1 > 1 \). So \(a_4 \) would have to be packed in bin \(B_3 \). This gives us a bin packing of the 4 items into three bins. An alternate way of packing items that would lead to the use of just two bins is to pack \(a_1 \) and \(a_4 \) into bin \(B_1 \) and \(a_2 \) and \(a_3 \) into bin \(B_2 \). This packing that uses only two bins is an optimal solution to the Bin Packing problem.

The First Fit greedy algorithm processes items in the given order \(a_1, a_2, \ldots, a_n \) and it considers the bins in the order \(B_1, B_2, \ldots \). For each item \(a_j \) being processed, the algorithm packs \(a_j \) into the first bin that has space for it. It turns out that this very simple algorithm is a 2-approximation algorithm for Bin Packing. The following problems will help you prove this.

(a) Suppose that the First Fit algorithm packs the given items into \(t \) bins. Prove that at most one of these bins has half or more of its space empty. Use this to deduce that the total size of the \(n \) input items is (strictly) more than \((t - 1)/2\).

(b) Use what you showed in (a) to then show that if an optimal bin packing uses \(b^* \) bins, then the First Fit algorithm uses at most \(2b^* \) bins.