
Fall 2021 CS: 4310 Homework 5

1. For each k = 2, 3, . . ., we define a graph Gk as follows. Let n = k!. Start with a subset U
containing n vertices labeled u1, u2, . . . , un. We will add to the graph other vertices and edges
so that the degree of each vertex in U ends up being k. Now add to the graph, k subsets of
vertices V1, V2, . . . , Vk, where |Vj | = n/j for each j, 1 ≤ j ≤ n. Now we will describe the edges
incident on each vertex in Vj . Consider the n/j vertices in Vj in some order. Connect the
first vertex in Vj to vertices u1, u2, . . . , uj , then the second vertex in Vj to uj+1, uj+2, . . . , u2j ,
then the third vertex in Vj to u2j+1, u2j+2, . . . , u3j , and so on. Thus every vertex in Vj has
degree j and every vertex in U is connected to exactly one vertex in Vj , for any j.

(a) Carefully draw and label the graph G3.

(b) Now consider the Minimum Vertex Cover (MVC) problem and a simple greedy algorithm
for the problem. You’ve encountered MVC in Reading Response 5. The greedy algorithm
I want you to consider, which I will call GreedyDegreeBased is this: repeatedly pick
a vertex that covers the most, as yet uncovered edges. This algorithm continues until
all edges are covered. Execute this algorithm on G3 with the following tie-breaking rule:
whenever there is a tie between two or more vertices, your algorithm should choose a
vertex from ∪kj=1Vj , rather than a vertex from U . It does not matter how ties are broken

between pairs of vertices in ∪kj=1Vj or between pairs of vertices in U . What is the vertex
cover produced by the algorithm in G3? What is an optimal vertex cover for G3?

(c) Your friend claims that the GreedyDegreeBased algorithm is a 3-approximation al-
gorithm. What is the smallest member of the family of graphs Gk defined above that
you could use as a counterexample to disprove your friend’s claim? Justify your answer
in 1-2 sentences.
Note: Here it may help you to know that

∑10
i=1 1/i is approximately 2.93 and

∑11
i=1 1/i

is approximately 3.02.

2. Consider the “Shortest Interval first” greedy algorithm for the Interval Scheduling problem.
(The problem discussed in Section 4.2 “Scheduling Classes” is usually called the Interval
Scheduling problem.) In this algorithm, we repeatedly pick a shortest interval to include in
our solution and as usual when an interval I is picked, then I and any overlapping intervals still
present are deleted. The algorithm breaks ties arbitrarily; in other words, if there are multiple
shortest intervals present, the algorithms picks one arbitrarily. By solving this problem,
you will be showing that the “Shortest Interval first” greedy algorithm is a 2-approximation
algorithm.

(a) Let A be the set of intervals returned by the algorithm for some input and let O be
an optimal solution for this input. Prove that every interval in A overlaps at most two
intervals in O.

(c) Consider an arbitrary input and let A be the set of intervals returned by the algorithm
for this input and let O be an optimal solution for this input. Now for each interval x
in O, charge $1 to an interval y in A that overlaps x. Note that y could be identical to
x. Also, note that y has to exist; otherwise the greedy algorithm would have added x to
the set A. Thus the number of dollars charged is exactly equal to |O|. Now answer the
following questions: (i) what is the maximum number of dollars that an interval in A is

1



charged? (ii) what does this tell us about the relative sizes of A and O? (Express your
answer as an inequality connecting |A| and |O|.), and (iii) what does this tell us about
the “shortest interval first” algorithm being an approximation algorithm for Interval
Scheduling?

3. The Bin Packing problem takes as input an infinite supply of bins B1, B2, B3, . . ., each bin of
size 1 unit. We are also given n items a1, a2, . . . , an and each item aj has a size sj that is a
real number in the interval [0, 1]. The Bin Packing problem seeks to find the smallest number
of bins such that all n items can be packed into these bins.

For example, suppose that we are given 4 items a1, a2, a3 and a4 of sizes 0.5, 0.4, 0.6, and 0.5
respectively. We could pack a1 and a2 in bin B1 because s1 + s2 = 0.9 ≤ 1. We could then
pack a3 into bin B2, but we could not also add a4 to bin B2, because s3 + s4 = 1.1 > 1. So
a4 would have to be packed in bin B3. This gives us a bin packing of the 4 items into three
bins. An alternate way of packing items that would lead to the use of just two bins is to pack
a1 and a4 into bin B1 and a2 and a3 into bin B2. This packing that uses only two bins is an
optimal solution to the Bin Packing problem.

The First Fit greedy algorithm processes items in the given order a1, a2, . . . , an and it con-
siders the bins in the order B1, B2, . . .. For each item aj being processed, the algorithm packs
aj into the first bin that has space for it. It turns out that this very simple algorithm is a
2-approximation algorithm for Bin Packing. The following problems will help you prove this.

(a) Suppose that the First Fit algorithm packs the given items into t bins. Prove that at
most one of these bins has half or more of its space empty. Use this to deduce that the
total size of the n input items is (strictly) more than (t− 1)/2.

(b) Use what you showed in (a) to then show that if an optimal bin packing uses b∗ bins,
then the First Fit algorithm uses at most 2b∗ bins.

2


