
Fall 2021 CS: 4310 Homework 2

For a positive integer m, an m-permutation is simply a permutation of the numbers 1, 2, . . . ,
m. So, for example, a (3, 1, 4, 2) is a 4-permutation. For a pair of m-permutations π and π′,
the inversion distance between π and π′, denoted ID(π, π′) is the number of pairs of elements
in {1, 2, . . . ,m} that appear in the opposite order in π and π′. For example, consider two 4-
permutations π = (3, 1, 2, 4) and π′ = (1, 3, 4, 2). Of the 6 possible pairs of numbers {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, and {3, 4}, the pairs {1, 3} and {2, 4} appear in opposite order in π and π′.
Therefore, ID(π, π′) = 2.

You are given as input, positive integers m, N , and D, followed by N distinct m-permutations.
You can assume that the input has format illustrated by the following example. Here m = 4,
N = 10, and D = 3.

4 10 3

3 1 2 4

1 3 4 2

4 3 2 1

4 3 1 2

2 3 1 4

3 4 2 1

1 3 2 4

1 2 4 3

2 1 4 3

1 2 3 4

Write a program that outputs, for each permutation π in the input, the number of permutations
π′ in the input for which ID(π, π′) ≤ D. Your output should have 10 lines and the first 2 lines of
your output should look like:

3 1 2 4: x

1 3 4 2: y

with x replaced by the actual number of 4-permutations among the 10 given 4-permutations that are
within inversion distance of 3 from permutation (3, 1, 2, 4) and similarly y replaced by the actual
number of 4-permutations among the 10 given 4-permutations that are within inversion distance of
3 from permutation (1, 3, 4, 2).

The core of your implementation should be 3 functions, let us call them InversionDistancev1,
InversionDistancev2, and InversionDistancev3, which implement 3 different algorithms for
computing the inversion distance between a pair of m-permutations. Each of these functions has
the same inputs and outputs. Specifically, the functions take as input two m-permutations Pi1,
Pi2, and a positive integer D. The functions return -1 if the inversion distance between Pi1, Pi2 is
(strictly) greater than D. Otherwise, the functions return the inversion distance between Pi1 and
Pi2.

Now I will briefly describe the algorithms you will implement for these 3 functions. The function
InversionDistancev1 will simply implement the algorithm in which you consider each pair of
integers {i, j}, 1 ≤ i < j ≤ m, and check if this pair appears in opposite order in Pi1 and Pi2. This
algorithm should run in O(m2) time. The function InversionDistancev2 will implement a divide-
and-conquer algorithm, running in O(m logm) time, based on MergeSort. To find out exactly

1



how this algorithm works watch Tim Roughgarden’s videos on Section 3.2, Part 1 and Part 2. The
function InversionDistancev3 will implement a small improvement to InversionDistancev2.
Specifically, if it turns out that when we call InversionDistancev3 on the left half and we get a -1
back, it means that we already know that the inversion distance between Pi1 and Pi2 is too large
and there is no reason to do anything else.

Additional instructions: (i) You can use Python or Java for your implementation. (ii) Your
code should be extremely well-documented and easy-to-read. (iii) It is critical that the asymptotic
running times of your implementations are exactly as required. (iv) Further details on exactly what
you should turn in will be provided in 3-4 days.

2


