
CS:3330 Greedy Algorithms Practice Problems, Spring 2018

1. You are given a set X = {x1, x2, . . . , xn} of points on the real line. Your task is to design
a greedy algorithm that finds a smallest set of intervals, each of length 2, that contains all
the given points.

Example: Suppose that X = {1.5, 2.0, 2.1, 5.7, 8.8, 9.1, 10.2}. Then the three intervals
[1.5, 3.5], [4, 6], and [8.7, 10.7] are length-2 intervals such that every x ∈ X is contained
in one of the intervals. Note that 3 is the minimum possible number of intervals because
points 1.5, 5.7, and 8.8 are far enough from each other that they have to be covered by 3
distinct intervals. Also, note that my solution is not unique – for example, I can shift the
middle interval [4, 6] to the right, say to [5.7, 7.7], without disturbing the other intervals,
and we would still have an optimal solution.

(a) Suppose that elements of X are presented in increasing order. Describe (using pseu-
docode) a greedy algorithm, running in O(n) time, for this problem.

(b) Using the approach that we used for the proof of correctness of the Interval Scheduling
greedy algorithm prove that your algorithm indeed produces an optimal solution. Your
proof needs to be clear and precise, in addition to being correct.

2. A variant of the Interval Scheduling problem is one in which each interval has an associated
non-negative weight. In this problem (called the Weighted Interval Scheduling problem),
we want to find a set of mutually non-overlapping intervals that have the maximum total
weight. For example, consider intervals I1 = [1, 3], I2 = [2, 4], and I3 = [3.5, 4.5] and
suppose that w(I1) = w(I3) = 1 and w(I2) = 10. Then, the optimal solution to this
problem would be {I2} and not {I1, I3} because the weight of I2 is 10 whereas the weight
of {I1, I2} is 1 + 1 = 2.

(a) The greedy algorithm that we used to solve the Interval Scheduling problem repeatedly
picked an interval with earliest finish time and deleted other intervals that overlapped
the selected interval. Show that this algorithm does not produce an optimal solution
to the Weighted Interval Scheduling problem.

(b) What about an algorithm that repeatedly picks a heaviest interval from all that are
available and then deletes other intervals that overlap with the chosen interval? Does
this algorithm always produce an optimal solution? If yes, then prove correctness of
the algorithm and if no, then construct a counter-example.

1


