CS:3330 Homework 9 Solution, Spring 2018

1(a)

B =10, a1 = 2,a3 = 9. For this input, the algorithm returns S = {2}, but there is a
feasible solution {9} whose total sum is more than twice the total sum of S.

First sort A in non-increasing order and then relabel the numbers a1, as,...,a, in this
order. The run the algorithm in part (a).

The proof is by contradiction. Suppose that there is a feasible subset S* such that the
total sum of S (the subset returned by the algorithm) is less than half the total sum of
S*. Then there is an element a € S* such that a ¢ S. Now let us consider why a is not
added to S. The answer is simple: a is not added to S because when a is considered by
the algorithm, adding a to the elements currently in S causes the total sum to exceed B.
Therefore, the total sum of S plus a is greater than B. Hence, (i) either the total sum of S
is greater than B/2, in which case we have proved the claim or (ii) a > B/2. So we assume
(ii) holds. Since the algorithm considers elements in non-increasing order, the elements
already in S when a was considered are also > B/2. Thus the total sum of S is > B/2.

Consider an input with three intervals, A, B, and C. Suppose that B is a short interval
(say, 1 unit long) and A and C' are long intervals (say, each 2 units long). Also, suppose
that A starts first, then B starts, then A ends, then C starts, then B ends, and finally
C ends. Thus B overlaps with A and C, but A and C are non-overlapping with each
other. The “shortest interval first” algorithm outputs { B}, whereas the optimal solution

is {A,C}.

Suppose that |O| = ¢ and the intervals in O are labeled x1,za, ..., 2 in left-to-right order.
To obtain a contradiction, we suppose that there is an interval y € A such that y overlaps
with 3 or more intervals in O. Call the intervals that y overlaps: x;, ®;41,...,Zitp, Where
p > 2. Since y overlaps z; and z;19, the interval z; 1, starts after the start time of y and
ends before the end time of y. Thus z;; is strictly shorter than y. The question then is
why did the “shortest Interval first” algorithm not pick ;1 instead of y. The only reason
for not picking x;11 is that the algorithm picked an interval =’ even shorter than x;y; and
2’ overlapped with x;,1 and eliminated it. But, any interval z’ that overlaps with ;41
will also overlap with y and eliminate it. Thus y cannot be in A — a contradiction.

(i) Each interval in A is charged at most 2 dollars. (ii) Thus the total number of dollars
charged is at most 2|A|. We already know that the total number of dollars charged is |O].
Therefore, |O| < 2|A| and equivalently |A| > 1/2-|O]. (iii) This tells us that the “shortest
interval first” algorithm always produces a solution whose size is at least 1/2 the size of an
optimal solution. Therefore, this algorithm is a 1/2-approximation.

Suppose that are two bins B; and Bj;, j > 4, such that both are half empty or more. Then
B; contains an item of size at most 0.5. When this item was processed, B; had enough
space for it and the item would have been placed in B;. Hence, it cannot be the case that
both B; and B; are half empty or more.

Suppose that the First Fit algorithm uses ¢ bins. We know from the above argument that
at least ¢ — 1 of these are more than half full and therefore the total size of the all items in
the input is more than (t —1)/2.

Suppose that an optimal bin packing uses b* bins and suppose that the First Fit algorithm
uses ¢ bins. By the argument in (a) we know that the total input size is more than (t—1)/2
and since eash bin has size 1 unit, b* > (¢t — 1)/2. Hence, t < 2b* + 1, implying that the
First Fit algorithm uses at most 2b* bins.




