
CS:3330 Homework 9 Solution, Spring 2018

1(a) B = 10, a1 = 2, a3 = 9. For this input, the algorithm returns S = {2}, but there is a
feasible solution {9} whose total sum is more than twice the total sum of S.

1(b) First sort A in non-increasing order and then relabel the numbers a1, a2, . . . , an in this
order. The run the algorithm in part (a).

1(c) The proof is by contradiction. Suppose that there is a feasible subset S∗ such that the
total sum of S (the subset returned by the algorithm) is less than half the total sum of
S∗. Then there is an element a ∈ S∗ such that a 6∈ S. Now let us consider why a is not
added to S. The answer is simple: a is not added to S because when a is considered by
the algorithm, adding a to the elements currently in S causes the total sum to exceed B.
Therefore, the total sum of S plus a is greater than B. Hence, (i) either the total sum of S
is greater than B/2, in which case we have proved the claim or (ii) a > B/2. So we assume
(ii) holds. Since the algorithm considers elements in non-increasing order, the elements
already in S when a was considered are also > B/2. Thus the total sum of S is > B/2.

2(a) Consider an input with three intervals, A, B, and C. Suppose that B is a short interval
(say, 1 unit long) and A and C are long intervals (say, each 2 units long). Also, suppose
that A starts first, then B starts, then A ends, then C starts, then B ends, and finally
C ends. Thus B overlaps with A and C, but A and C are non-overlapping with each
other. The “shortest interval first” algorithm outputs {B}, whereas the optimal solution
is {A,C}.

2(b) Suppose that |O| = t and the intervals in O are labeled x1, x2, . . . , xt in left-to-right order.
To obtain a contradiction, we suppose that there is an interval y ∈ A such that y overlaps
with 3 or more intervals in O. Call the intervals that y overlaps: xi, xi+1, . . . , xi+p, where
p ≥ 2. Since y overlaps xi and xi+2, the interval xi+1 starts after the start time of y and
ends before the end time of y. Thus xi+1 is strictly shorter than y. The question then is
why did the “shortest Interval first” algorithm not pick xi+1 instead of y. The only reason
for not picking xi+1 is that the algorithm picked an interval x′ even shorter than xi+1 and
x′ overlapped with xi+1 and eliminated it. But, any interval x′ that overlaps with xi+1

will also overlap with y and eliminate it. Thus y cannot be in A – a contradiction.

2(c) (i) Each interval in A is charged at most 2 dollars. (ii) Thus the total number of dollars
charged is at most 2|A|. We already know that the total number of dollars charged is |O|.
Therefore, |O| ≤ 2|A| and equivalently |A| ≥ 1/2 · |O|. (iii) This tells us that the “shortest
interval first” algorithm always produces a solution whose size is at least 1/2 the size of an
optimal solution. Therefore, this algorithm is a 1/2-approximation.

3(a) Suppose that are two bins Bi and Bj , j > i, such that both are half empty or more. Then
Bj contains an item of size at most 0.5. When this item was processed, Bi had enough
space for it and the item would have been placed in Bi. Hence, it cannot be the case that
both Bi and Bj are half empty or more.

Suppose that the First Fit algorithm uses t bins. We know from the above argument that
at least t− 1 of these are more than half full and therefore the total size of the all items in
the input is more than (t− 1)/2.

3(b) Suppose that an optimal bin packing uses b∗ bins and suppose that the First Fit algorithm
uses t bins. By the argument in (a) we know that the total input size is more than (t−1)/2
and since eash bin has size 1 unit, b∗ > (t − 1)/2. Hence, t < 2b∗ + 1, implying that the
First Fit algorithm uses at most 2b∗ bins.

1

