CS:3330 Homework 8, Spring 2018
Due in class on Tue, April 17

1. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color to
each interval, so that any two overlapping intervals are assigned different colors. Describe
and analyze an efficient algorithm to compute the minimum number of colors needed to
properly color X. Assume that your input consists of two arrays L[1..n] and R[1..n], where
L[i] and RJ[i] are the left and right endpoints of the ith interval.

The motivation for this problem is similar to the motivation for the Interval Scheduling
problem we studied in class. Suppose that we are given a bunch of events (e.g., courses)
we need to schedule, then finding the fewest number of rooms we can schedule all of these
events in, is the Interval Coloring problem described here.

Here is a brief description of a greedy algorithm, you should consider. Let P = {1,2,3,...}
be the set of “colors” we want to use for the interevals. Consider the intervals one-by-one
in left-to-right order of start times and to each interval, assign the smallest color from P
that is “available.”

You’ll have to think pretty carefully about how to prove the correctness of this algorithm
and how to present your proof. Your proof will be graded for correctness as well as clarity.

2. Problem 5.5

3. Traveling Salesman Problem (TSP) Given a set P of points (e.g., a bunch of cities)
and pairwise “distances” between these points, the Traveling Salesman Problem (TSP)
seeks to find a shortest tour that starts from a point and visits every point exactly once
and returns to the starting point. TSP is computationally very difficult; the fastest al-
gorithms for this problem run in exponential time and there are reasons to believe that
faster algorithms do not exist for TSP. A special case of TSP is the metric TSP prob-
lem in which distances satisfy the triangle inequality, i.e., for any three points pi, ps2, p3,
distance(p1,ps) < distance(py, p2)+distance(ps, p3). Even metric TSP is computationally
difficult, but there are good approximation algorithms for metric TSP. In this homework
you are required to implement a simple 2-approximation algorithm for metric TSP that is
based on computing an MST.

The data set We have posted a data file called miles.dat, which contains basic ge-
ographic data on 128 cities in North America. This data set was obtained from Donald
Knuth’s Stanford Graphbase. The file miles.dat contains, for each city, the following
pieces of information: (i) name of the city, (ii) state of the city, (iii) latitude and longitude
of the city, (iv) population of the city, and (v) distances to all other cities This is old data -
from a 1949 Rand McNally mileage guide, so the population numbers are definitely out of
date. The highway mileage may also be out of date, but the data serves our purposes quite
nicely. Note that the data file specifies for each city, the distances to all cities before it in
the file; this is sufficient to get pairwise distance between any pair of cities. To understand
how the distances are specified take a look at the following first few lines of the data file.
This data is telling us that Worcester, MA is 2964 miles from Yakima, WA, 1520 miles
from Yankton, SD, and 604 miles from Youngstown, OH.

Youngstown, 0H[4110,8065]115436
Yankton, SD[4288,9739]12011

966

Yakima, WA[4660,12051]149826
1513 2410

Worcester, MA[4227,7180]161799
2964 1520 604



Also note that latitudes and longitudes are specified without decimal points or N, S, E, W
indicators: for example Youngstown, OH is at longitude 41.09972 N and latitude 80.64972
W and this is specified (approximately) as “[4110,8065].”

Your first coding task is to read from this data file and store the data is appropriate data
structures.

MST algorithm Your next coding task is to implement Kruskal’s MST algorithm. Your
implementations should be faithful implementation of the algorithm discussed in class and
should have asymptotic running time of O(mlogn) on graphs with n vertices and m edges.
For Kruskal’s algorithm you will need to implement the Disjoint Set Union Find data
structure using union by rank.

MST to a Traveling Salesman tour It is easy to see how to transform an MST to a
Traveling Salesman tour whose total length is at most twice the length of an optimal tour.
This would be a 2-approximation algorithm. Here is a fairly clear explanation of both the
algorithm and the proof of why it yields a 2-approximation:

http://www.cs.tufts.edu/ cowen/advanced/2002/adv-lect3.pdf

Your final coding task is to implement an algorithm that takes as input an MST and
returns a 2-approximate Traveling salesman tour.

What to submit (a) Output the 127 edges in the computed MST and the weight of
the computed MST. (b) After transforming the computed MST into a Traveling Salesman
Tour, output the tour and its weight.




