
CS:3330 Homework 6, Spring 2018
Due in class on Thu, March 8

1. Consider the 5-letter words in the text file words.dat that was posted for Homework 4.
Define an undirected graph whose vertex set is exactly the set of words in this file. The
edges of this graph connect every pair of words w and w′ if and only if w and w′ differ in
exactly one letter. For example, the words above and abode would be connected by an
edge, since they differ only in the 4th letter. Let us call this the word graph.

Write a program that reads from words.dat and constructs an adjacency list representation
of the word graph. To build an adjacency list representation that provides efficient access,
first read the words from the file into an array W of size 5,757. Since the words appear in
the file in sorted order, they can be placed in W in sorted order without much effort. Now
build a second array, called A, such that for any word w, if w appears in slot i in array W ,
then slot i in the array A points to the list of the neighbors of w in the word graph.

Now add two functions neighbors and degree to your program. Each function should
take as arguments the arrays A and W and a word w. The neighbors function should
return an array of all the neighbors of w in the word graph and the degree function should
return the number of neighbors of w in the word graph. In order for these functions to be
efficient, you should use binary search to figure out which slot in W the word w appears
in.

Now use your code to answer the following questions: (a) What is the highest degree in
the word graph? (b) Which are the words that have this highest degree? (c) Which are
the words that have degree 0 in the word graph? (d) What is the total number of edges in
the word graph?

2. Now implement the functions explore and DFS that perform a depth-first search of a given
graph. Building on these functions, write a new function that solves the ConnectedCom-
ponents problem. Recall that the output of the ConnectedComponents problem is a
labeling of the vertices of the graph so that all vertices in the same connected component
get the same label and vertices in different connected components get different labels.

Now use your code to answer the following questions: (a) What is the size (i.e., number
of vertices) of a largest connected component in the word graph? (b) What is the number
of connected components in the word graph? (c) What is the number of size-2 connected
components in the word graph?

3. A separating vertex is a vertex whose removal increases the number of connected compo-
nents in the graph. For example, if the graph were connected (i.e., had just one connected
component) then any vertex whose removal disconnects the graph (i.e., leads to two or
more connected components) is a separating vertex.

(a) To check your understanding of the definition of a separating vertex, find all separating
vertices in the graph shown in Problem 3.31 (b) from the textbook.

(b) DFS can used to identify separating vertices. To figure out how, first read Section
3.2.4 on the computation of pre(v) and post(v) for each vertex v. Then read the
definition of low(u) for a vertex u in Problem 3.31 (g). Modify the functions you
wrote in Problem 2 to compute, pre(u), post(u), and low(u) for all vertices u, in
linear time

(c) Once the values pre(u), post(u), and low(u) for all vertices u are computed, it s pretty
easy to use these values to identify separating vertices. Read the characterization
of separating vertices in Problem 3.31 (e) and (f). (You don’t have to solve these
problems; just understand the statements you’re being asked to show.) Then modify
the explore and DFS functions to return an array of separating vertices.

1



(d) Finally, use your code to output all the separating vertices of the word graph.

2


