1(a) Pseudo code

\[O(m+n) \]

// Compute degrees and set \(H[v] \leftarrow 1 \) if degree \([v] \geq 10 \)

for each \(v \in V \) do

 count \(\leftarrow 0 \)

 for each neighbor \(w \) of \(v \) do

 count \(\leftarrow \) count + 1

 degree \([v] \leftarrow \) count

 if degree \([v] \geq 10 \) then

 \(H[v] \leftarrow 1 \)

\[O(m+n) \]

// Neighbors of vertices with degree \(\geq 10 \) set their \(H[w] \) to 1

// Block 1

for each \(v \in V \) do

 if \(H[v] = 1 \) then

 for each neighbor \(w \) of \(v \) do

 \(H[w] \leftarrow 1 \)

\[O(m+n) \]

// Vertices 2 hops away from vertices with degree \(\geq 10 \) set their \(H[w] \) to 1

// Block 2

for each \(v \in V \) do

 if \(H[v] = 1 \) then

 for each neighbor \(w \) of \(v \) do

 \(H[w] \leftarrow 1 \).
1(b) Note that the code in Block 1 and Block 2 are identical. Block 1 spreads $H[v] = 1$ to neighbor of vertices with degree ≥ 10. Block 2 spreads $H[v] = 1$ to vertices 2 hops away from vertices with degree ≥ 10.

To spread this to vertices 20 hops away, we just need to enclose the block of code in Block 1 in a loop that executes 20 times.

(Since each block runs in $O(m+n)$ time, 20 executions of this block also runs in $O(m+n)$ time.)

2(a) Delete $\epsilon[u,v]$ from G and run the explore function with source U on the resulting graph. If v is visited by the explore function, then $\epsilon[u,v]$ is in a cycle in G.

(Explanation: If there is a path from u to v in the graph without edge $\epsilon[u,v]$, then adding $\epsilon[u,v]$ to that path gives a cycle containing $\epsilon[u,v]$.)
3(a) for all $u \in V$
- $\text{dist}[u] \leftarrow \infty$
- $\text{_prev}[u] \leftarrow \text{NIL}$
- $\text{dist}[s] \leftarrow c(s)$

H $\leftarrow \text{makeQueue}(V)$ (with dist-values as keys)

while H is non-empty do
- $u \leftarrow \text{deleteMin}(H)$

for all edges $(u,v) \in E$ do
 if $\text{dist}[v] > \text{dist}[u] + l(u,v) + c(v)$ then
 $\text{dist}[v] \leftarrow \text{dist}[u] + l(u,v) + c(v)$
 $\text{prev}(v) \leftarrow u$
 decreaseKey(H, (H,v))
3. (b) (i)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>After Iter 1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>After Iter 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>After Iter 3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

(ii) An alternate edge ordering that allows Bellman-Ford to complete in 1 iteration:

(D, C), (C, B), (B, A), (D, A), (D, B)

4(a) A dominates 4 vertices, including itself. This is strictly more than the number of vertices dominated by any other vertex. So greedy picks A.

After that greedy is forced to pick 3 more vertices, one to dominate E, one to dominate F, and one to dominate G. So the greedy dominating set has size 4. Optimal solution = \{B, C, D\}.

4 (b)

A diagram is shown with points labeled A, B, C, D, E, F, and G. Intervals are given:

- \(I_1\) overlaps \(I_2\)
- \(I_3\) overlaps \(I_4\)
- \(I_5\)

<table>
<thead>
<tr>
<th>Intervals</th>
<th>(\omega(I)/\text{deg}(I))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1, I_5)</td>
<td>0.5/1 = 0.5</td>
</tr>
<tr>
<td>(I_2, I_4)</td>
<td>3/2 = 1.5</td>
</tr>
<tr>
<td>(I_3)</td>
<td>4/2 = 2</td>
</tr>
</tbody>
</table>

So greedy picks \(I_3\) and then \(I_1\) & \(I_5\). Total weight = 5

OPT = \{I_2, I_4\}. Weight of OPT = 6.