Problem 1

Initially: \(\text{dist}(s) = 0, \text{dist}(v) = \infty \) for all \(v \neq s \), \(\text{pred}(v) = \text{NULL} \) for all \(v \).

Phase 1: Queue at the start of Phase 1: \((s) \); Edges that are relaxed (in this order): \((s, a), (s, b) \); New \(\text{dist}(\cdot) \) and \(\text{pred}(\cdot) \) values: \(\text{dist}(a) = 4, \text{dist}(b) = 5, \text{pred}(a) = s, \text{pred}(b) = s \).

Phase 2: Queue at the start of Phase 2: \((a, b) \); Edges that are relaxed (in this order): \((a, c), (b, a), (b, d) \); New \(\text{dist}(\cdot) \) and \(\text{pred}(\cdot) \) values: \(\text{dist}(c) = 6, \text{dist}(a) = 2, \text{dist}(d) = 4, \text{pred}(c) = a, \text{pred}(a) = b, \text{pred}(d) = b \).

Phase 3: Queue at the start of Phase 3: \((c, a, d) \); Edges that are relaxed (in this order): \((c, e), (a, c) \); New \(\text{dist}(\cdot) \) and \(\text{pred}(\cdot) \) values: \(\text{dist}(e) = 5, \text{dist}(c) = 4, \text{pred}(e) = c, \text{pred}(c) = a \).

Phase 4: Queue at the start of Phase 4: \((e, c) \); Edges that are relaxed (in this order): \((e, c) \); New \(\text{dist}(\cdot) \) and \(\text{pred}(\cdot) \) values: \(\text{dist}(e) = 3, \text{pred}(e) = c \).

Phase 5: Queue at the start of Phase 5: \((e) \); No edges are relaxed and so no \(\text{dist}(\cdot) \) values or \(\text{pred}(\cdot) \) values are updated.

Problem 2

Instead of using a min-heap priority queue implementation of the “bag” data structure, we implement the “bag” as an array \(A[1, \ldots, (n-1)W] \) such that for any \(j, 1 \leq j \leq (n-1)W \), \(A[j] \) contains the set of all vertices in the bag with \(\text{dist}(\cdot) \) equal to \(j \). We also maintain an index called \(\text{current} \), that is initialized to 1. This index always points to the slot in \(A \) that we will look at next to find a vertex with smallest \(\text{dist}(\cdot) \) value in the “bag.”

We now need to describe two operations on this array:

- **Finding and removing a vertex with smallest \(\text{dist}(\cdot) \) value from the bag.** We scan \(A \) starting at index \(\text{current} \) until we reach a slot in \(A \) that is non-empty. We pick an arbitrary vertex from the set stored at this slot and remove it from the set. The vertex chosen in this manner has the smallest \(\text{dist}(\cdot) \) value among all vertices in the bag. Since our scan of \(A \) always moves to the right, the total amount of time we spending in pulling out all vertices from the bag is \(O(n \cdot W) \).

- **Relaxing edges.** When a vertex \(u \) is removed from the bag, we process all edges \((u, v) \) outgoing from \(u \) and relax these if necessary. For each edge, \((u, v) \) that is relaxed, \(\text{dist}(v) \) falls and so \(v \) has to be removed from its old slot in \(A \) and moved to a new slot. All this can be done in \(O(1) \) time because we know the old (larger) \(\text{dist}(\cdot) \) value of \(v \) and also the new (smaller) \(\text{dist}(\cdot) \) value and we can uses these \(\text{dist}(\cdot) \) values as indices in \(A \). Thus the total amount of time we spend relaxing edges outgoing from \(u \) is \(O(\text{degree}(u)) \). When this is summed over all vertices \(u \), we get a running time of \(O(m) \).

Thus the total running time of the algorithm is \(O(nW + m) \).
Problem 3
Let $G = (V, E)$ be the given, connected, edge-weighted graph. Let $w(e)$ denote the weight of an edge $e \in E$. Create a new edge-weighted graph G' by replacing each edge weight $w(e)$ by $-w(e)$ (i.e., the negation of $w(e)$). Otherwise, G and G' are identical. Now compute an MST on G' using your favorite MST algorithm. The claim is that the minimum weight spanning tree T of G' is a maximum weight spanning tree of G. This follows from the fact that if T has total weight W in G', then it has weight $-W$ in G. Therefore, if there were a heavier spanning tree in G, then there would have been a lighter spanning tree in G' that the MST algorithm did not find – a contradiction. Using any of the standard MST algorithms, we compute a maximum spanning tree in $O(m \log n)$ time.

Problem 4
Instead of a min-heap priority queue, we maintain an array $A[1, \ldots, n]$ to implement the “bag” data structure. In each slot $A[j]$ we maintain the $\text{dist}(\cdot)$ value of vertex j. Thus, the n vertices of the graph serve as indices into this array. Then finding and removing a vertex with smallest $\text{dist}(\cdot)$ value from the bag simply requires a scan of the entire array. This takes $O(n)$ time per vertex that is removed and therefore takes $O(n^2)$ total time. When a vertex u is removed from the bag, we process all edges (u, v) outgoing from u and relax these if necessary. For each edge, (u, v) that is relaxed, $\text{dist}(v)$ falls and needs to be updated in A. Using v as an index into A allows us to do this in $O(1)$ time. Thus the total amount of time we spend relaxing edges outgoing from u is $O(\text{degree}(u))$. When this is summed over all vertices u, we get a running time of $O(m) = O(n^2)$. Therefore, the total running time is $O(n^2)$.