
CS:3330 Final Exam, Fall 2015
Monday, Dec 14 2015, 7:30 am to 9:30 am

1. Shortest paths are not always unique: sometimes there are two or more different paths
between two vertices, with the minimum possible length. Now consider the following
problem.

Input: A directed, edge-weighted graph G = (V,E), a source vertex s ∈ V
Output: A boolean array usp[·] such that for each vertex u ∈ V , the entry usp[u] is True
if and only if there is a unique shortest path from s to u.
Note: usp[s] = True.

(a) For the following directed, edge-weighted graph and given source vertex s, write down
the values in the array usp[·].

s

a

b c

d

5

3

2

3

4

1

1

(b) Given a directed graph with n vertices and m edges, describe an algorithm that solves
the above problem in O((m + n) log n) time.
Hint: Your starting point should be Dijkstra’s shortest path algorithm.
Note: Use the top of the next page for your answer.

1



2. Consider a data structure that maintain a binary counter of unspecified length and supports
two operations: (i) increment, which increments the counter’s value by 1 and (ii) reset,
that resets the counter’s value to 0.

A simple way to implement a binary counter is to allocate a very large array, say of length
M , of bits when the data structure is initialized and set all these bits to 0. Then, the
increment operation can be implemented as follows:

function increment(B)
i ← 0
while (B[i] = 1) do

B[i] ← 0
i ← i + 1

B[i] ← 1

Notice that this implementation of increment does not check for an overflow; it just
assumes that M is going to be large enough that checking for overflow is unnnecessary. In
your thinking about this problem, do not worry about the possibility of an overflow.

Example: Suppose that after initializing the binary counter data structure, we perform
five increment operations. Thus the current value of the counter is 5, which is represented
by B[0] = 1, B[1] = 0, B[2] = 1, B[i] = 0 for all i > 2. Then calling increment once more
changes B[0] to 0 and B[1] to 1, leaving all other bits unchanged.

(a) Suppose that the binary counter is initialized as described above. Now consider a
sequence of n operations, some of which are increment operations and some of which
are reset operations. What is the worst case running time of any one of these
operations, as a function of n?

2



(b) Argue that the amortized running time of these operations is O(1).
Hint: Every increment is a sequence of assignments that turn a bunch of bits from 1
to 0 followed by one assignment that turns a bit from 0 to 1. Now notice that every
assignment that turns a bit from 1 to 0 can be “charged” to a previous increment

operation that turned that bit from 0 to 1.

3. The following statements may or may not be True. In each case, determine if the statement
is True or False. If you claim that the statement is True, provide a proof. Otherwise,
provide a counterexample.

(a) Let G = (V,E) be an undirected, edge-weighted graph and let T be a minimum
spanning tree (MST) of G. Now let us increase the weight of every edge in G by 1.
T is still an MST of the graph with increased edge-weights.

3



(b) Let G = (V,E) be a directed, edge-weighted graph and let P be a shortest path in G
from a vertex s ∈ V to a vertex t ∈ V . Now let us increase the weight of every edge in
G by 1. P is still a shortest path from s to t in the graph with increased edge-weights.

(c) Suppose a graph G with n vertices has more than n− 1 edges and there is a unique
heaviest edge. Then this edge cannot be part of any minimum spanning tree of G.

(d) Suppose that G is an undirected, edge-weighted graph in which all edge-weights are
distinct and positive. Consider a vertex s ∈ V . It is possible for the tree of shortest
paths from s (to all vertices in G) to not share even a single edge with the minimum
spanning tree of G.

4



4. Consider the following recursive function that takes as arguments an array L and two non-
negative integers first and last, that serve as indices into L. Therefore, if L has length
n, then first and last are guaranteed to be in the range 0 through n− 1.

function strangeSum(L, first, last)
if (last < first) then

return 0
if (last = first) then

return L[first]
if (last = first + 1) then

return L[first] + L[first+1]
else

m ← last - first + 1
leftSum ← strangeSum(L, first, first + m/2 - 1)
midSum ← strangeSum(L, first + m/4, first + 3 * m/4 - 1)
rightSum ← strangeSum(L, first + m/2, last)
return leftSum + midSum + rightSum

(a) What is the value returned by the function call strangeSum(L, 0, 3) where L is the
array [1, 4, 2, 3].

(b) Write a recurrence relation describing the running time the function call strangeSum(L,
0, n-1) on an array L of length n.

(c) Solve the recurrence in (b) to obtain the running time of the function call strangeSum(L,
0, n-1), in terms of n, the length of the given array L.

5



5. Here are some problems on NP-completeness and intractability.

(a) The decision version of the Interval Scheduling problem is the following.

Interval Sceduling Decision (ISD)
Input: A set I of intervals, a positive integer k.
Output: Is there is subset I ′ ⊆ I of pairwise non-overlapping intervals of size at least
k?

The decision version of the Maximum Independent Set problem is the following.

Maximum Independent Set Decision (MISD)
Input: A set G = (V,E), a positive integer k.
Output: Is there is an independent set V ′ ⊆ V of size at least k?

Your task is to prove that ISD ≤P MISD.

(b) OK, proving that ISD ≤P MISD may not have been that difficult. But, what about
showing that MISD ≤P ISD? I want you to either prove that MISD ≤P ISD or
argue that it is unlikely for there to be a polynomial-time reduction from MISD to
ISD.

6



(c) For a graph G = (V,E), a clique is a set C ⊆ V of vertices such that every pair of
vertices in C is connected by an edge. Now consider the following decision problem:

Maximum Clique Decision (MCD)
Input: A set G = (V,E), a positive integer k.
Output: Is there is an clique C ⊆ V of size at least k?

Using the fact that MISD is NP-complete, I want you to show that MCD is NP-
complete. Recall that there are two main steps in showing this: (i) Show that MCD ∈
NP and (ii) MISD ≤P MCD.

7


