1. Shortest paths are not always unique: sometimes there are two or more different paths between two vertices, with the minimum possible length. Now consider the following problem.

Input: A directed, edge-weighted graph $G = (V, E)$, a source vertex $s \in V$

Output: A boolean array $usp[\cdot]$ such that for each vertex $u \in V$, the entry $usp[u]$ is True if and only if there is a *unique* shortest path from s to u.

Note: $usp[s] = True$.

(a) For the following directed, edge-weighted graph and given source vertex s, write down the values in the array $usp[\cdot]$.

```
  a  3  d
  |   |
  5   1
  +---+
  |   |
  b   1
  |   |
  3   4
  +---+
  s   c
```

(b) Given a directed graph with n vertices and m edges, describe an algorithm that solves the above problem in $O((m + n) \log n)$ time.

Hint: Your starting point should be Dijkstra’s shortest path algorithm.

Note: Use the top of the next page for your answer.
Consider a data structure that maintains a binary counter of unspecified length and supports two operations: (i) increment, which increments the counter's value by 1 and (ii) reset, that resets the counter's value to 0.

A simple way to implement a binary counter is to allocate a very large array, say of length M, of bits when the data structure is initialized and set all these bits to 0. Then, the increment operation can be implemented as follows:

```plaintext
function increment(B)
    i ← 0
    while (B[i] = 1) do
        B[i] ← 0
        i ← i + 1
    B[i] ← 1
```

Notice that this implementation of increment does not check for an overflow; it just assumes that M is going to be large enough that checking for overflow is unnecessary. In your thinking about this problem, do not worry about the possibility of an overflow.

Example: Suppose that after initializing the binary counter data structure, we perform five increment operations. Thus the current value of the counter is 5, which is represented by $B[0] = 1, B[1] = 0, B[2] = 1, B[i] = 0$ for all $i > 2$. Then calling increment once more changes $B[0]$ to 0 and $B[1]$ to 1, leaving all other bits unchanged.

(a) Suppose that the binary counter is initialized as described above. Now consider a sequence of n operations, some of which are increment operations and some of which are reset operations. What is the worst case running time of any one of these operations, as a function of n?
(b) Argue that the amortized running time of these operations is $O(1)$.

Hint: Every increment is a sequence of assignments that turn a bunch of bits from 1 to 0 followed by one assignment that turns a bit from 0 to 1. Now notice that every assignment that turns a bit from 1 to 0 can be “charged” to a previous increment operation that turned that bit from 0 to 1.

3. The following statements may or may not be True. In each case, determine if the statement is True or False. If you claim that the statement is True, provide a proof. Otherwise, provide a counterexample.

(a) Let $G = (V, E)$ be an undirected, edge-weighted graph and let T be a minimum spanning tree (MST) of G. Now let us increase the weight of every edge in G by 1. T is still an MST of the graph with increased edge-weights.
(b) Let $G = (V, E)$ be a directed, edge-weighted graph and let P be a shortest path in G from a vertex $s \in V$ to a vertex $t \in V$. Now let us increase the weight of every edge in G by 1. P is still a shortest path from s to t in the graph with increased edge-weights.

(c) Suppose a graph G with n vertices has more than $n - 1$ edges and there is a unique heaviest edge. Then this edge cannot be part of any minimum spanning tree of G.

(d) Suppose that G is an undirected, edge-weighted graph in which all edge-weights are distinct and positive. Consider a vertex $s \in V$. It is possible for the tree of shortest paths from s (to all vertices in G) to not share even a single edge with the minimum spanning tree of G.
4. Consider the following recursive function that takes as arguments an array L and two non-negative integers first and last, that serve as indices into L. Therefore, if L has length n, then first and last are guaranteed to be in the range 0 through $n - 1$.

```python
function strangeSum(L, first, last)
    if (last < first) then
        return 0
    if (last = first) then
        return L[first]
    if (last = first + 1) then
        return L[first] + L[first+1]
    else
        m ← last - first + 1
        leftSum ← strangeSum(L, first, first + m/2 - 1)
        midSum ← strangeSum(L, first + m/4, first + 3 * m/4 - 1)
        rightSum ← strangeSum(L, first + m/2, last)
        return leftSum + midSum + rightSum
```

(a) What is the value returned by the function call `strangeSum(L, 0, 3)` where L is the array $[1, 4, 2, 3]$.

(b) Write a recurrence relation describing the running time the function call `strangeSum(L, 0, n-1)` on an array L of length n.

(c) Solve the recurrence in (b) to obtain the running time of the function call `strangeSum(L, 0, n-1)`, in terms of n, the length of the given array L.
5. Here are some problems on NP-completeness and intractability.

(a) The decision version of the Interval Scheduling problem is the following.

Interval Scheduling Decision (ISD)

Input: A set I of intervals, a positive integer k.

Output: Is there is subset $I' \subseteq I$ of pairwise non-overlapping intervals of size at least k?

The decision version of the Maximum Independent Set problem is the following.

Maximum Independent Set Decision (MISD)

Input: A set $G = (V, E)$, a positive integer k.

Output: Is there is an independent set $V' \subseteq V$ of size at least k?

Your task is to prove that $\text{ISD} \leq_p \text{MISD}$.

(b) OK, proving that $\text{ISD} \leq_p \text{MISD}$ may not have been that difficult. But, what about showing that $\text{MISD} \leq_p \text{ISD}$? I want you to either prove that $\text{MISD} \leq_p \text{ISD}$ or argue that it is unlikely for there to be a polynomial-time reduction from MISD to ISD.
(c) For a graph $G = (V, E)$, a clique is a set $C \subseteq V$ of vertices such that every pair of vertices in C is connected by an edge. Now consider the following decision problem:

Maximum Clique Decision (MCD)

Input: A set $G = (V, E)$, a positive integer k.

Output: Is there a clique $C \subseteq V$ of size at least k?

Using the fact that Misd is NP-complete, I want you to show that MCD is NP-complete. Recall that there are two main steps in showing this: (i) Show that MCD \in NP and (ii) Misd \leq_P MCD.