CS:3330 Final Exam, Fall 2015
Monday, Dec 14 2015, 7:30 am to 9:30 am

1. Shortest paths are not always unique: sometimes there are two or more different paths
between two vertices, with the minimum possible length. Now consider the following
problem.

Input: A directed, edge-weighted graph G = (V, E), a source vertex s € V

Output: A boolean array usp[-] such that for each vertex u € V', the entry usp[u] is True
if and only if there is a unique shortest path from s to u.

Note: usp[s] = True.

(a) For the following directed, edge-weighted graph and given source vertex s, write down
the values in the array usp[-].

(b) Given a directed graph with n vertices and m edges, describe an algorithm that solves
the above problem in O((m + n)logn) time.
Hint: Your starting point should be Dijkstra’s shortest path algorithm.
Note: Use the top of the next page for your answer.



2. Consider a data structure that maintain a binary counter of unspecified length and supports
two operations: (i) increment, which increments the counter’s value by 1 and (ii) reset,
that resets the counter’s value to 0.

A simple way to implement a binary counter is to allocate a very large array, say of length
M, of bits when the data structure is initialized and set all these bits to 0. Then, the
increment operation can be implemented as follows:

function increment(B)
i+ 0
while (B[i] = 1) do
Bli] < 0
i+i+1
Bli] «+ 1

Notice that this implementation of increment does not check for an overflow; it just
assumes that M is going to be large enough that checking for overflow is unnnecessary. In
your thinking about this problem, do not worry about the possibility of an overflow.

Example: Suppose that after initializing the binary counter data structure, we perform
five increment operations. Thus the current value of the counter is 5, which is represented
by B[0] = 1, B[1] = 0, B[2] = 1, B[i] = 0 for all ¢ > 2. Then calling increment once more
changes B[0] to 0 and B[1] to 1, leaving all other bits unchanged.

(a) Suppose that the binary counter is initialized as described above. Now consider a
sequence of n operations, some of which are increment operations and some of which
are reset operations. What is the worst case running time of any one of these
operations, as a function of n?



(b) Argue that the amortized running time of these operations is O(1).
Hint: Every increment is a sequence of assignments that turn a bunch of bits from 1
to 0 followed by one assignment that turns a bit from 0 to 1. Now notice that every
assignment that turns a bit from 1 to 0 can be “charged” to a previous increment
operation that turned that bit from 0 to 1.

3. The following statements may or may not be True. In each case, determine if the statement
is True or False. If you claim that the statement is True, provide a proof. Otherwise,
provide a counterexample.

(a) Let G = (V,E) be an undirected, edge-weighted graph and let 7" be a minimum
spanning tree (MST) of G. Now let us increase the weight of every edge in G by 1.
T is still an MST of the graph with increased edge-weights.



(b) Let G = (V, E) be a directed, edge-weighted graph and let P be a shortest path in G
from a vertex s € V to a vertex t € V. Now let us increase the weight of every edge in
G by 1. P is still a shortest path from s to ¢ in the graph with increased edge-weights.

(¢c) Suppose a graph G with n vertices has more than n — 1 edges and there is a unique
heaviest edge. Then this edge cannot be part of any minimum spanning tree of G.

(d) Suppose that G is an undirected, edge-weighted graph in which all edge-weights are
distinct and positive. Consider a vertex s € V. It is possible for the tree of shortest
paths from s (to all vertices in G) to not share even a single edge with the minimum
spanning tree of G.



4. Consider the following recursive function that takes as arguments an array L and two non-
negative integers first and last, that serve as indices into L. Therefore, if L has length
n, then first and last are guaranteed to be in the range 0 through n — 1.

function strangeSum(L, first, last)

if (last < first) then
return 0

if (last = first) then
return L[first]

if (last = first + 1) then
return L[first] + L[first+1]

else
m < last - first + 1
leftSum ¢ strangeSum(L, first, first + m/2 - 1)
midSum < strangeSum(L, first + m/4, first + 3 *m/4 - 1)
rightSum < strangeSum(L, first + m/2, last)
return leftSum + midSum + rightSum

(a) What is the value returned by the function call strangeSum(L, 0, 3) where L is the
array [1, 4, 2, 3].

(b) Write a recurrence relation describing the running time the function call strangeSum(L,
0, n-1) on an array L of length n.

(¢) Solve the recurrence in (b) to obtain the running time of the function call strangeSum(L,
0, n-1), in terms of n, the length of the given array L.



5. Here are some problems on NP-completeness and intractability.

(a) The decision version of the INTERVAL SCHEDULING problem is the following.

INTERVAL SCEDULING DEcIsION (ISD)

Input: A set I of intervals, a positive integer k.

Output: Is there is subset I’ C I of pairwise non-overlapping intervals of size at least
k?

The decision version of the MAXIMUM INDEPENDENT SET problem is the following.
MAXIMUM INDEPENDENT SET DECISION (MISD)

Input: A set G = (V, E), a positive integer k.

Output: Is there is an independent set V/ C V of size at least k7

Your task is to prove that ISD <p MISD.

OK, proving that ISD <p MISD may not have been that difficult. But, what about
showing that MISD <p ISD? I want you to either prove that MISD <p ISD or
argue that it is unlikely for there to be a polynomial-time reduction from MISD to
ISD.



(¢c) For a graph G = (V, E), a clique is a set C C V of vertices such that every pair of
vertices in C' is connected by an edge. Now consider the following decision problem:
MaxiMuM CLIQUE DEcisioN (MCD)

Input: A set G = (V, E), a positive integer k.

Output: Is there is an clique C C V of size at least k7

Using the fact that MISD is NP-complete, I want you to show that MCD is NP-
complete. Recall that there are two main steps in showing this: (i) Show that MCD €
NP and (ii) MISD <p MCD.



