1. The problem Composite is the decision problem that takes as input a positive integer \(n \) and asks if \(n \) is a composite. Show that Composite is in NP.

2. Do you think Composite is NP-complete? Explain your answer.

3. For a problem \(X \), define its complement as the problem

 \[\overline{X} = \{ x \in \{0,1\}^* | x \notin X \}. \]

 (Thus yes-instances of \(X \) are no-instances of \(\overline{X} \) and no-instances of \(X \) are yes-instances of \(\overline{X} \).) If \(X \in P \), then do you think \(\overline{X} \) is also in \(P \)? Explain your answer.

4. If \(X \in NP \), then do you think \(\overline{X} \) is also in \(NP \)? Explain your answer.

5. Problems 1 and 2 at the end of Chapter 8 (Page 505).