
CS:3330 Homework 6, Fall 2015
Due in class on Thu, Dec 10

Note: This homework is longer than usual, but is not harder than usual.

1. Suppose that we want to compute the value of the expression

ad mod n

for positive integers a, d, and n, where a and d are guaranteed to belong to {1, 2, . . . , n−1}.
Since a and d are both guaranteed to be less than n, we know that the input size is Θ(log n).
Therefore, an efficient (i.e., polynomial time) algorithm for the problem is one that runs in
O(logc n) for some constant c. In this problem you are required to design and implement an
O(log3 n)-time algorithm. In practical terms, I want your function to be able to run very
fast (essentially instantaneously) on pretty large numbers, e.g., numbers with roughly 100
digits. You can use your favorite high level language (e.g., Java, C, C++, Python, Scala,
etc.). Specifically, I want you to implement a function – let us call it bigPowerMod – that
takes as arguments a, d, and n and returns ad mod n.

There are two efficiency-related issues to pay attention to.

(i) It is possible to compute ad by performing d−1 multiplications. But, this is too many
because d−1 can be as large as n−2 and therefore performing so many multiplications
would take Θ(n) time. For another way of seeing how inefficient this would be suppose
that n is a 100-digit number, then your program would be performing, roughly 10100

multiplications, which would literally take forever!

(ii) While your final answer is an integer in the range [0, n− 1] (because of the mod n),
you have to watch out for the size of intermediate answers. When we mutiply a
number with b bits with another number with b′ bits, the answer can have answer
many as b+b′ bits. This means that if a has log2 n bits, then a2 can have 2 log2 n bits,
a3 can have 3 log2 n bits, and so on. Thus ad can have d log n bits, which is Θ(n log n)
in the worst case. Again, if n is a 100-digit number, this amounts to more that 10100

bits (which is more than the number of atoms in the universe!). Of course, carrying
such large intermediate answers around also means that each multiplication will take
forever.

You can use divide-and-conquer to solve the first problem. Here is a hint: to compute
ad, you can (recursively) compute ad/2 and after that it takes one or two multiplications,
depending on whether d is even or odd, to compute ad. This approach allows you to
compute ad mod n using O(log d) multiplications. To solve the second problem, you should
note that you can perform mod n as soon as you get intermediate answers rather than wait
to compute mod n at the very end. This is because of the following property of mod :
(a · b · c) mod n = ((a · b) mod n) mod n.

(a) Print and submit your code. No matter what programming language you use, I expect
that your function will be no more than 10 lines long. Make sure your code is well
documented.

(b) Let n be the following 100-digit number.

29085119528125578724347048203972299284505302539901

58990550731991011846571635621025786879881561814989

Use the function bigPowerMod to compute (n − 100)n−1 mod n. Report the answer
you get.

(c) Provide an argument for why the running time of your algorithm/code is O(log3 n).
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2. The algorithm for the Closest Point Pair problem (that we discussed in class) is careful
to ensure that it does O(n) work outside of the recursive calls. In this problem, I want to
investigate the consequences of not being this careful, on the running time of algorithm for
his problem. Specifically, suppose that instead of sorting the points initially (outside the
recursion), we sort the points as needed (by x-coordinate and by y-coordinate) inside the
recursive calls.

(a) Write down the recurrence relation that characterizes the running time of this new
algorithm.

(b) Solve this recurrence to obtain the running time of this new algorithm.

3. Like mergeSort, quickSort is a sorting algorithm based on the divide-and-conquer paradigm.
As we have seen, the worst case running time of mergeSort is Θ(n log n), as was shown
by solving the mergeSort recurrence relation. The situation with the running time of
quickSort is a bit murkier, and more interesting. Here is Python code for quickSort that
I wrote a few years ago:

def partition(L, first, last):

# Pick L[first] as the "pivot" around which we partition the list

p = first

for current in range(p+1, last+1):

if L[current] < L[p]:

swap(L, current, p+1)

swap(L, p, p+1)

p = p + 1

return p

def generalQuickSort(L, first, last):

# Base case: if first == last, there is nothing to do

# Recursive case: 2 or more elements in the slice L[first..last]

if first < last:

# Divide step

p = partition(L, first, last)

# Conquer step

generalQuickSort(L, first, p-1)

generalQuickSort(L, p+1, last)

# Combine step: there is nothing left to do!

Suppose that L is an already-sorted list (in increasing order) of length n. This problem asks
you to figure out the worst case running time of the function call generalQuickSort(L,
0, n− 1). Start by writing a recurrence relation and then solve it.
Hint: The complicatio with quickSort is that the choice of the “pivot” in the partition

function affects the sizes of the two subproblems that are solved by the recursive calls.
This in turn affects the overall running time quite significantly.

4. I want you to now remember the following partitioning problem we considered a while ago.
You are given a list L of length n and asked to partition the elements of L into two sublists
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L1 and L2 such that (i) n/3 ≤ |L1|, |L2| ≤ 2n/3 and (ii) all elements in L1 are less than or
equal to all elements in L2.

We designed a simple, randomized (Las Vegas) algorithm for this problem that ran in
O(n) expected time. Let us replace the call to partition in the code for quickSort given
above by a call this Las Vegas algorithm. After we obtain a partition (L1, L2) by calling
this Las Vegas algorithm, we can simply call quickSort on L1 and then on L2. Now we
have a randomized (Las Vegas) version of quickSort. I would like to analyze the expected
running time of this algorithm.

(a) Write down a recurrence relation for the expected running time of this randomized
version of quickSort.

(b) Solve this recurrence to obtain an upper bound on the expected running time of this
randomized version of quickSort.

5. In one of the earlier homeworks, you considered a primality-testing algorithm running in
O(
√
n) time. Since the input size for the problem is Θ(log n), this algorithm (whose running

time is exponential in the input size) is extremely inefficient. On an input with 100s of
digits this algorithm could, in the worst case, take more time than the entire lifetime of
the universe! This problem will introduce you to a method for designing extremely fast
primality testing algorithms.

One of the oldest fast primality testing algorithm, called the Miller-Rabin Algorithm is a
randomized, Monte Carlo algorithm dating back to the late 70s. If implemented correctly,
the Miller-Rabin Algorithm can easily test integers with 100s of digits, for primality. The
Miller-Rabin algorithm is extremely fast, not just because it is randomized, but also because
it is allowed to produce an incorrect answer! If the input is a prime, the Miller-Rabin
algorithm will correctly figure this out; however, if the input is a composite, then the
algorithm may, with a very tiny probability, make an error and report the number as a
prime.

In this homework, you are asked to implement a randomized primality testing algorithm
that is simpler than the Miller-Rabin Algorithm and is called the Fermat’s Little Theorem
Primality Test (FLTP Test). The well-known encryption program PGP uses the FLTP
Test in its algorithms. As the name suggests, the FLTP Test depends on Fermat’s Little
Theorem. This is an old mathematical result, first stated by Pierre de Fermat in 1640 and
it says this:

If p is a prime then for all integers a, 1 ≤ a < p, ap−1 mod p equals 1.

In other words, if p is a prime then you can pick any integer a between 1 and p−1 (inclusive
of 1 and p− 1) and compute ap−1, divide this by p and the remainder will be 1.

Example. Suppose p = 7. Then Fermat’s Little Theorem is saying that for a = 1, 2, . . . , 6,
a6 mod 7 equals 1. This is easy to check.

16 = 1 1 mod 7 = 1
26 = 64 64 mod 7 = 1
36 = 729 729 mod 7 = 1
46 = 4096 4096 mod 7 = 1
56 = 15625 15625 mod 7 = 1
66 = 46656 46656 mod 7 = 1

Fermat’s Little Theorem suggests the following simple algorithm for primality testing:

Given an integer n > 1, compute an−1 mod n for each a = 1, 2, . . . n − 1. If for
any of the a’s that were considered, an−1 mod n 6= 1 then output composite;
otherwise output prime.
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While this algorithm is correct, it is not any faster than the naive primality testing algo-
rithms we have already implemented. Notice that the above algorithm simply runs through
all a’s between 1 and n− 1.

To speed up up this algorithm we use a different mathematical fact. Before we can state
this fact, we need to define two pieces of terminology.

(i) For a composite n, we call an integer a, 1 ≤ a < n, a Fermat witness if an−1 mod n 6=
1. Thus a Fermat witness is a “witness” to the compositeness of n.

(ii) A positive integer n is a Carmichael number if an−1 mod n = 1 for all a’s in the range
[1, n− 1] that are relatively prime to n. Recall that two numbers are relatively prime
if they have no common factors other than 1. For example, 4 and 9 are relatively
prime.

Example. The smallest Carmichael number is 561. 561 is a composite because
3 × 11 × 17 = 561. 561 is a Carmichael number because for every a in the range
[1, 560] that is relatively prime to 561, a560 mod 561 = 1. So what are some values of
a that are relatively prime to 561? 1, 2, 4, 5, and 7 are the first 5 integers in the range
[1, 560] that are relatively prime to 561. For each value of a = 1, 2, 4, 5, 7, it is the
case that a560 mod 561 = 1. For values of a not relatively prime to 561, a560 mod 561
may or may not be equal to 1.

Now the mathematical fact that helps us speed up primality testing is this:

Every composite integer n is either a Carmichael number or at least 1/2 of the
integers in [1, n− 1] are Fermat witnesses.

Thus the above fact is telling us that with the exception of Carmichael numbers, every
composite n has lots of Fermat witnesses – at least 50% of the numbers in the range [1, n−1]
are Fermat witnesses.

Example. Let n = 6. The following table shows values of a5 mod 6 for a = 1, 2, 3, 4, 5.

15 = 1 1 mod 6 = 1
25 = 32 32 mod 6 = 2
35 = 243 243 mod 6 = 3
45 = 1024 1024 mod 6 = 4
55 = 3125 3125 mod 6 = 5

From the table it is clear that 6 has 4 Fermat witnesses - thus more than 50% of the 5
possible values of a are Fermat witnesses.

This means that if the input is a non-Carmichael composite n, then we can pick an integer
a at random from the range [1, n − 1] and expect that a will be a Fermat witness for the
compositeness of n with probability at least 1/2. Thus we would have an at least 50%
chance of correctly identifying n as a composite, just by performing one test. To improve
the chances of getting the test right, we could just repeat the random choice of a a few
times. Suppose we repeat the above process 10 times, independently picking a at random
(from the range [1, n− 1]) each time, then the probability of not finding a Fermat witness
all 10 times would be under 1/210 = 1/1024. Thus the probability of incorrectly declaring
that a non-Carmichael composite is a prime is less than 1/1000, even if we repeat the
test only 10 times. This leads to the following simple randomized algorithm for primality
testing:
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Input: a positive integer n
Algorithm: FLTP Test
repeat 10 times

pick an integer a at random from [1, n− 1]
if an−1 mod n 6= 1, output composite and exit the program.

output prime

This leaves just the vexing issue of Carmichael numbers. These may have only few Fer-
mat witnesses and so the above algorithm may declare them as primes (even though they
are composite) with a fairly high probability. For example, 561 has 240 Fermat witnesses,
somewhat less than half of 560. In fact, this is the main reason that the Miller-Rabin Algo-
rithm and not the FLTP test is used for primality testing in general. However, Carmichael
numbers are not that common. The smallest Carmichael number is 561 and these numbers
get rarer as we start considering larger numbers.

(a) Your task is to implement the FLTP Test. Your program should prompt the user for a
positive integer, larger than 1 and then output a message indicating the primality of the
input. Notice that FLTP Test involves computing an−1 mod n, where n could be quite
large. Of course, you should use the function bigPowerMod you implemented for Problem
1 in this homework.

Use your implementation to test the primality of the following numbers:

• 5991810554633396517767024967580894321153

• 19822271254366240129112696248055903545291688310293

• 27175146095341224357465037532218133092930145221379

• 470287785858076441566723507866751092927015824834881906763507

• 693711969678975263512873427191894879124339838606362751311911118403883

(b) As you know from the above discussion, the FLTP Test can incorrectly classify compos-
ites as primes. Write a program that runs the FLTP Test on all integers in the range
[500, 100000] and reports all integers in this range that are incorrectly classified as primes.

To complete this task, your program would have to be able to correctly identify primes/-
composites and the easiest way to do this is to simply use a naive primality testing al-
gorithm. Examine the output of your program and compare the output with the list of
Carmichael numbers less than 100000 (there are not that many Carmichael numbers under
10,000). Are you seeing any non-Carmichael composites classified as primes? In general,
what would be a simple way of improving the accuracy of the program with respect to
non-Carmichael composites?
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