1. Let G be a directed, edge-weighted graph such that every edge has a weight that belongs to the set $\{0, 1, \ldots, W\}$, where W is a non-negative integer.

 (a) Carefully describe a modified implementation of Dijkstra’s algorithm so that the SSSP problem can be solved in $O(n \cdot W + m)$ time for this type of graphs. Here, as usual, the input graph has n vertices and m edges.

 (b) Separately argue that the worst case running time of your algorithm is indeed $O(n \cdot W + m)$.

 Note: This is a problem that appears in the practice problem set on Dijkstra’s Shortest Path algorithm, that I posted just before Exam 2. You may also recall that I sketched out this algorithm in class during review for Exam 2.

2. Problem 20 from Chapter 4 (Pages 199-200).

3. Problem 21 from Chapter 4 (Page 200).

4. An **extendable array** is a data structure that stores a sequence of items and supports the following operations.

 - $\text{AddToFront}(x)$ adds x to the beginning of the sequence.
 - $\text{AddToEnd}(x)$ adds x to the end of the sequence.
 - $\text{Lookup}(k)$ returns the k-th item in the sequence, or Null if the current length of the sequence is less than k.

 Describe a simple data structure that implements an extendable array. Your AddToFront and AddToEnd algorithms should take $O(1)$ amortized time, and your Lookup algorithm should take $O(1)$ worst-case time. The data structure should use $O(n)$ space, where n is the current length of the sequence.

 Notes: Programming languages such as Python provide an extendable array data structure (e.g., called list in Python). There are “hidden” running time costs to such a data structure that beginning programmers are usually unaware off. This problem make some of these costs explicit. The typical implementation of the extendable array data structure uses fixed-sized arrays. During initialization, a fixed-sized array of size, say 100, is constructed. As items are added to the array, it may become full and we need to seek a new, larger, fixed-sized array and copy elements from the old array to the new (larger) array. Thus, some calls to the AddToFront and AddToEnd operations can be quite costly. Hence, the problem does not expect you to show that the worst case running time of these operations is $O(1)$, only that the amortized running time is $O(1)$. You may recall from our amortized analysis of the disjoint set union-find data structure, it may be possible to “charge” the cost of a costly operation to elements of the data structure and then argue that each element is assigned $O(1)$ charge, over the course of many operations. This is the approach you should attempt to use for this problem. One final hint I want to provide is that when the array becomes full and it is time to seek a new array, you don’t want to seek a new array that is just slightly larger. If you do so, the new array will also quickly fill up and you’ll end up seeking a new array and copying elements very soon.

5. Problem 1 in Chapter 5.

6. In class (and in Chapter 5), we discussed the solutions of recurrences of the form $T(n) \leq q \cdot T(n/2) + c \cdot n$, when $n > 2$ and $T(n) \leq 2$ for $n \leq 2$. It is easy to extend this approach to situations in which the subproblem size is $n/3$, $n/4$, etc., instead of $n/2$. Use these ideas to solve the recurrences:
(a) $T(n) \leq 7 \cdot T(n/5) + c \cdot n$, when $n > 2$ and $T(n) \leq c$ for $n \leq 2$.
(b) $T(n) \leq 7 \cdot T(n/10) + c \cdot n \log_2 n$, when $n > 2$ and $T(n) \leq c$ for $n \leq 2$.

7. Your friend tells you that she’s come up with a simple, modification to binary search whose running time is modeled by the recurrence: $T(n) \leq T(\sqrt{n}) + 10$ for $n > 2$ and $T(n) \leq 10$ for $n \leq 2$. Based on the running time of your friend’s modified binary search, should you start using her version of binary search, instead of your binary search? Carefully justify your answer.