
Shiyao Wang CS:3330 (Prof. Pemmaraju ): Assignment #3 Solutions

Problem 1

(a) Consider the following algorithm with input being an adjacency list representation L of the given

graph:

Algorithm 1 NeighborhoodDeg(L)

1: Initialize degree to be an array of size n

2: Initialize nbdegree to be an array of size n

3: for each vertex i in the graph do

4: degree[i ] ← 0

5: for each neighbor j of vertex i do

6: degree[i ] ← degree[i ] + 1

7: end for

8: end for

9: for each vertex i in the graph do

10: nbdegree[i ] ← degree[i ]

11: for each neighbor j of vertex i do

12: nbdegree[i ] ← nbdegree[i ] + degree[j ]

13: end for

14: end for

15: return nbdegree

(b) For the algorithm above, the overall running time can be calculated as follows. The first loop (Lines

3-8) computes the degree of each vertex in the graph and stores it in the degree array. Each vertex i

is considered in the outer for-loop (Line 3) and then each neighbor j of vertex i is considered. Thus,

for a vertex i, the inner loop runs in time Θ(1) + Θ(degree(i)). Summing up over all vertices i, we

see that the total running time of the first loop is Θ(m + n). The second loop (Lines 9-14) sums up

the degrees of all the neighbors of each vertex (along with the degree of that vertex) and stores this in

an array nbdegree. The structure of this for-loop is essentially the same as the structure of the first

for-loop and therefore the running time of this loop is also Θ(m + n). Thus the total running time of

this algorithm is Θ(m + n).

(c) Consider a new implementation of the algorithm with input being an adjacency matrix A instead of

an adjacency list L.

The major differences betweent the two implementations is that in an adjacency matrix representation,

examining all neighbors of any vertex i takes Θ(n) time independent of the number of neighbors that

vertex i has. This means that the first loop (Line 3-7) executes in Θ(n2) time and similarly, the second

loop (Lines 8-15) executes in Θ(n2) time. Thus the total running time of this new implementation is

Θ(n2).

Problem 2

(a) Initially, all vertices are white. After each iteration of the while loop, the results are as below:

1) white: E,F,G; grey: B,C,D; black: A

2) white: G; grey: C,D,E, F ; black: A,B

3) white: None; grey: C,D,E, F,G; black: A,B,D

The final dominating set is A,B,D.

Problem 2 continued on next page. . . Page 1 of 4



Shiyao Wang CS:3330 (Prof. Pemmaraju ): Assignment #3 Solutions Problem 2 (continued)

Algorithm 2 NewNeighborhoodDeg(A)

1: Initialize degree to be an array of size n

2: Initialize nbdegree to be an array of size n

3: for each vertex i in the graph do

4: for each vertex j in the graph do

5: degree[i ] ← degree[i ] + Aij

6: end for

7: end for

8: for for each vertex i in L do

9: nbdegree[i ] ← degree[i ]

10: for each vertex j in the graph do

11: if Aij == 1 then

12: nbdegree[i ] ← nbdegree[i ] + degree[j ]

13: end if

14: end for

15: end for

16: return nbdegree

L1 L2 L3

v1

v2

v3

vR vB

Figure 1: A bad example for greedy algorithm for Minimum Dominating Set.

(b) The execution of the greedy algorithm will repeatedly pick the vertex with the maximum number of

white neighbors. In the beginning, v3 has 8 white neighbors from L3 plus v1, v2, vR, vB , which are white

as well. Thus v3 has a white neighborhood size of 13 (including itself). The remaining vertices have the

following white neighborhood sizes: v2: 9, v1: 7, vR: 12, vB : 12, and every vertex x ∈ L1 ∪L2 ∪L3 has

white neighborhood size equal to 3. Thus v3 will be picked first and colored black. Once v3 is colored

black, the white neighborhood sizes become: v2: 4, v1: 2, vR: 3, vB : 3 and every vertex x ∈ L1 ∪ L2

has white neighborhood size equal to 1. Thus v2 will be picked next. Now the white neighborhood

sizes are v1: 2, vR: 1, vB : 1 and every vertex x ∈ L1 has white neighborhood size equal to 1. So

v1 is picked in the last iteration. In this way, the dominating set created by the algorithm is the set

{v1, v2, v3}, but the minimum dominating set is easily seen as {vR, vB}.

(c) The minimum dominating set in Gn has size 2. The greedy algorithm returns a dominating set

{v1, v2, . . . , vn} of size n in Gn.

(d) The graph G21 serves as a counterexample to the claim that the greedy algorithm is a 10-approximation.

This is because the greedy algorithm produces a solution of size 21 which is strictly more than 10 times

the size of a minimum dominating set.

Page 2 of 4



Shiyao Wang CS:3330 (Prof. Pemmaraju ): Assignment #3 Solutions Problem 2

Problem 3

(a) The greedy algorithm in Problem 2 with input adjacency list can be implemented in the following way:

Algorithm 3 Dominate(L)

1: Set nonblack be an empty object to host non-black vertices

2: Let ds be an empty set for hosting the dominating set

3: Let color be a length-n array, all of whose slots are initialized to white

4: for each vertex i in the graph do

5: nonblack.insert(i, L[i ].length+1)

6: end for

7: (v, whiteDeg) ← nonblack.getmax()

8: while whiteDeg > 0 do

9: Save v to ds

10: if color[v] == white then

11: for each neighbor j of vertex v do

12: nonblack.decreaseValue(j, 1)

13: end for

14: end if

15: for each neighbor j of vertex v do

16: if color[j] == white then

17: for each neighbor k of vertex j do

18: nonblack.decreaseValue(k, 1)

19: end for

20: color[j] ← gray

21: end if

22: end for

23: color[v] ← black

24: (v, whiteDeg) ← nonblack.getmax()

25: end while

26: return ds

(b) Given the running time of the 3 methods, getMax, insert, and decreaseValue, we can analyze

the algorithm’s running time complexity as follows. The for-loop (Lines 4-6) executes insert(k, v)

n times, taking O(log n) time for each insertion. Thus, this for-loop will run in O(n log n) time. The

while-loop is executed n times because with each execution, one vertex is deleted from nonblack.

Each execution of getmax, takes O(log n) time and therefore extracting vertices with largest white

neighborhood from nonblack take O(n log n) time. After a vertex v is extracted from nonblack and

added to ds, we have to update white neighborhood sizes associated with vertices in nonblack. Now

note that for each vertex that changes from white to gray or black, we update its neighbors’ values

in nonblack. A vertex changes from white to some other color only once and therefore fo each edge

we perform this update at most twice. Updates of these values (via decreaseValue) take O(log n)

time. Thus the total time to update sizes of white neighborhood sizes is O(m log n). Thus the total

running time of this algorithm is O((m + n) log n).

(c) The data structure that can fulfill the runtime specifications is a max-heap.

Page 3 of 4



Shiyao Wang CS:3330 (Prof. Pemmaraju ): Assignment #3 Solutions Problem 3

Problem 4

This problem is a graph modeling problem. We can convert the number maze M into graph and use BFS

on this graph to find a solution. First, we make each number in the number maze a vertex. Thus there are

a total of n2 vertices corresponding to an n× n maze. Then for each vertex Mi,j , we read its value k in the

number maze and connect Mi,j to Mi+k,j , Mi−k,j , Mi,j+k, Mi,j−k (provided these vertices exist). Once the

graph is completely constructed, we can use BFS to find a shortest path from the vertex corresponding to

the top-left square to the vertex corresponding to the bottom-right square.

Page 4 of 4


