
CS:3330 Homework 3, Fall 2015
Due in class on Tue, Oct 20

1. For any vertex v in a graph, the neighborhood degree of v is the sum of the degrees of v
and all its neighbors. Your problem is to design an algorithm that takes as input a graph
G = (V,E) represented in some way (i.e., using an adjacency matrix or an adjacency list)
and returns an array nbdDegree of neighborhood degrees of all vertices in the graph.

(a) First, assume that the graph is represented using an adjacency list. Describe an
algorithm for the problem that runs in O(m + n) time, where m is the number of
edges and n is the number of vertices of the input graph.

(b) Argue that the running time of your algorithm is indeed O(m + n).

(c) Now make any modifications necessary to the algorithm described in (a) so that the
algorithms runs correctly assuming that the input graph is represented using an ad-
jacency matrix. (My expectation is that you’ll have to make very few modifications.)
Restate your algorithm and analyze its running time. Express your answer as a func-
tion of m and n using the O-notation.

2. A set D ⊆ V of vertices of a graph G = (V,E) is a dominating set if for every vertex
v ∈ V , either v is in D or has a neighbor in D. Think of D as a set of “dominators,” each
of which “dominates” itself and all of its neighbors; thus every vertex is “dominated” by a
dominating set.

A well known optimization problem is the minimum dominating set problem in which we
are given a graph and asked to find a dominating set with fewest vertices. The minimum
dominating set problem is often used to abstract problems that arise in wireless networks
– routing and saving on battery power.

A simple, natural greedy algorithm for the problem would be to repeatedly pick a vertex
(as a dominator) that can dominate the most, as yet, undominated vertices. (Note: a
vertex dominates itself.) Here is pseudocode that implements this idea.

1. Initialize all vertices in the graph to have the color white
2. while the graph contains white vertices do
3. pick a vertex v that dominates the highest number of white vertices
4. color v black

5. color gray any neighbor of v that is not black

Here is a brief explanation of this algorithm. At any point in the algorithm, the vertices
have one of three colors: white, gray, and black. The black vertices are in the solution (the
dominating set). The gray vertices are not in the solution, but they have been “dominated”
by some vertex in the solution. Finally, the white vertices are the ones that have not yet
been dominated and need to be. So at every step in the algorithm, we make a natural
greedy choice of picking a vertex (to add to the solution) that dominates the maximum
number of white vertices.

(a) Show the execution of the above-described greedy algorithm on the following input
graph. Make sure to clearly show the color of each vertex after each iteration of
the while-loop. When there are ties (i.e., two or more vertices dominating the most
number of white vertices) then your algorithm should pick a vertex whose name
appears earliest in alphabetical order. Finally, write down the dominating set chosen
by your algorithm.

1

(b) As you might expect, the greedy algorithm described above does not always return
a minimum dominating set. Here I describe a family of graphs Gn for n = 1, 2,
Start with subsets of vertices L1, L2, . . . , Ln, where |Li| = 2i for each i = 1, 2, . . . , n.
Now add vertices vi, i = 1, 2, . . . , n to the graph and connect each vi to all the vertices
in Li. Then connect all the n vi’s to each other. Next add two vertices vR and vB
to the graph. Connect vR to vB and all the vi’s; similarly, connect vB to all the vi’s.
Finally, for each i = 1, 2, . . . , n, pick half the vertices in Li and connect to vR and
pick the other half and connect to vB .

Carefully draw G3. Describe the execution of the above-described greedy algorithm
on G3. What is the size of the dominating set returned by your algorithm? And what
is the size of a minimum dominating set on G3?

(c) In general, what is the size of a minimum dominating set in Gn? What is the size of
the dominating set returned by the greedy algorithm on Gn?

(d) Suppose that someone claimed that the greedy algorithm is a 10-approximation al-
gorithm for the minimum dominating set problem. What graph would serve as a
counterexample to this claim?

3. To implement the above greedy algorithm efficiently, we need a data structure that permits
us to efficiently (and repeatedly) pull out a vertex that dominates the maximum number of
white vertices. This needs to be done as the number of white vertices falls in each iteration.
For now imagine that we have a data structure that maintains a collection of (key, value)
pairs (with no two elements having the same key) supporting the following operations:

• getMax(): This deletes and returns a (key, value) pair with the maximum value
among all elements in the collection.

• insert(k, v): This inserts an element (k, v) into the collection, assuming that there
are no elements already in the collection with key equal to k.

• decreaseValue(k, d): The modifies the (key, value) pair with key equal to k, re-
placing value by value− d.

Now here is the problem.

(a) Restate the greedy algorithm from Problem 2 using pseudocode, but now in a way
that allows us to do a run-time analysis of the pseudocode. Specifically, assume that
the graph is represented as an adjacency list. Also, maintain a collection of non-black
vertices and the number of white vertices they dominate as a collection of (key, value)
pairs using the data structure mentioned above. Thus, your pseudocode will be mak-
ing repeated calls to the operations getMax(), insert(k, v), and decreaseValue(k,
d) described above.

2

(b) Suppose that there is a way implement the above-mentioned data structure so that
getMax() runs in O(1) rounds and insert(k, v) and decreaseValue(k, d) run in
O(log s) time each, where s is the number of elements in the collection. Given this,
what is the running time of your implementation in (a), as a function of m (number
of edges) and n (number of vertices) of the input graph. As usual, I am looking for
an asymptotic running time.

(c) Think back to your class on data structures. What is the name of the data structure
that can be implemented in a manner satisfying what we’ve supposed in (b).

4. A number maze is an n×n grid of positive integers. A token starts in the upper left corner;
your goal is to move the token to the lower-right corner. On each turn, you are allowed to
move the token up, down, left, or right; the distance you may move the token is determined
by the number on its current square. For example, if the token is on a square labeled 3,
then you may move the token three steps up, three steps down, three steps left, or three
steps right. However, you are never allowed to move the token off the edge of the board.
Describe and analyze an efficient algorithm that either returns the minimum number of
moves required to solve a given number maze, or correctly reports that the maze has no
solution.
(This problem is from Jeff Erickson’s notes.)

5. I have posted on the course website a text file containing a graph described as a list of
edges. As mentioned in the comments at the top of this file, the graph has 23133 vertices
and 186936 edges. Your task is to implement an efficient program in your favorite language
that answers the following questions (see (a) and (b) below) about this graph. What we
have learned about graph traversals in class should be more than adequate for you to write
this program. The interaction between your program and the user should be extremely
simple – the program just reads the file (no need to prompt the user for anything) and
produces the two answers as output. Note that the answer to the first question is two
numbers and the answer to the second question is three numbers.

Submit your program via an ICON dropbox. Make sure your program follows all the
standard guidelines for good coding, including meaningful documentation and variable
names, modularity, etc. The actual answers to the questions below and the paragraph
description of your algorithms (part (c)) can be submitted with the rest of the homework.

(a) What is the size (i.e., number of vertices and edges) of the largest connected compo-
nent in this graph?

(b) What is the diameter of this graph and what are two vertices that are this distance
apart from each other? The diameter of a graph is the maximum distance between
any pair of vertices in the graph.

(c) Write a paragraph briefly describing what algorithms you implemented to answer
questions (a) and (b). Also, write down the asymptotic running time of your imple-
mentations that answer each of these questions.

3

