
22C:31 Homework 3

Due in class on Tuesday, March 23rd

This homework will be graded out of 60 points and it is worth 6% of your grade. The Teaching
Assistant will grade some 6 out of the 8 problems, with each problem worth 10 points.

1. Here is pseudocode for Prim’s algorithm for the Minimum Spanning Tree problem that is
quite close to code in a high level programming language.

primMST(Graph G){

//Defining Data structures and initializing them to be empty

VertexSet S, MinHeap H, EdgeSet T

// getVertex() returns an arbitrary vertex in the graph

current = G.getVertex()

// Initialize S to an arbitrary vertex

S.insert(current)

// Initialize H to contain all vertices, except current

vertices = G.allVertices()

for i = 1 to vertices.size() do

if(vertices[i] != current)

H.insert(vertices[i], null, LARGENUMBER)

// Main loop that repeatedly and greedily selects cheapest

// edges between S and the rest of the vertices

while(S.size() != G.size())do{

L = G.getNeighbors(current)

// Process each neighbor of current to determine if its entry

// in the heap can be decreased

for i = 1 to L.size() do

H.decreaseKey(L[i].neighbor, current, L[i].edgeWeight)

// Pick a vertex in the heap that has the cheapest edge to S

heapItem = H.delete()

// Update S and T

S.insert(heapItem.vertex())

T.insert(heapItem.vertex(), heapItem.neighbor())

}

}

Most of the code is fairly self-explanatory. Here are some additional notes that will help
you understand the code.

• G.getNeighbors(v): returns an array with all the neighbors of v. Each item in the
array contains two fields: (i) neighbor u, and (ii) edgeWeight w. Here u is a neighbor
of v and w is the weight of edge {v, u}. The size of the array is equal to the number
of neighbors of v.

1



• MinHeap H: Each item in H contains 3 fields: (i) vertex: v, (ii) neighbor: u, and (iii)
edgeWeight: w. The heap is organized by edgeWeight, i.e., an item with smallest
edge weight is at the top of the heap, etc. The vertex v is outside S, and the edge
{v, u} is a lightest edge from v to a vertex in S, and w is the weight of this edge.

• H.decreaseKey(v, u, w): This minHeap operation compares edge weight w with
the edgeWeight currently associated with v in the heap. If w is smaller, then the
edgeWeight field (associated with vertex v) is decreased to w and the neighbor field
(associated with vertex v) is updated to u.

It is easy to implement a graph data structure (for example using adjacency lists) that
maintains a graph with n vertices and m edges in which getVertex() takes O(1) time,
allVertices() takes O(n) time, and getNeighbors(v) takes O(degree(v)) times. Based
on this information and what you know about the efficiency of heap operations, carefully
analyze the running time of the above pseudocode. Specifically, label the lines of the code
1, 2, 3, . . . and for each line i specify (i) the running time of one execution of line i, (ii) the
total number of times line i might be executed, and (iii) the total running time of line i.
Your final answer should specify the running time of the entire algorithm, as a function of
m and n.
Note: I did an “informal” version of this analysis in class.

2. Here are problems on running time analysis, similar to the one on Exam 1.

(a) Consider the following code fragment.

while(n ≥ 1)do

m← n
while (m ≥ 1) do

for i = 1 to m do

print(”hello world”)
m← m/2

n← n/2

Express the running time of this code fragment as a function of n. Specifically, come
up with a function f(n) such that the running time of the function is Θ(f(n)). Prove
your claim by showing that the running time of the code fragment is both O(f(n))
and Ω(f(n)).

(b) Now modify the code fragment so that the for-loop goes from 1 through n, instead of
from 1 through n. Redo (a) for this modified code.

3. Solve the following recurrences and obtain an asymptotic upper bound on T (n):

(a) T (n) = 4T
(

n

2

)

+ n.

(b) T (n) = T (n− 1) + n.

(c) T (n) = 3T
(

n

4

)

+ n2.

(d) T (n) = T (
√

n) + 1.

In all cases, assume that T (n) = b for all n ≤ a for some convenient constants a and b.

4. Problem 26, Page 202.

5. Problem 28, Page 203.

6. Problem 31, Page 204.

7. Problem 4, Page 247.

8. Problem 7, Page 248-249.

2


