
Computer Science III (22C:30, 22C:115)
Project 3, Due: 12/13/02, 5 pm

1. Introduction.

In this programming project you will build on the code you developed for Projects 1 and 2 to
produce a program that computes a Hamiltonian cycle in a given graph. A Hamiltonian cycle in
a graph is a path that starts at a node, visits every node of the graph exactly once, and returns
to the starting node. For example, a knight’s tour is a Hamiltonian cycle in a graph whose nodes
are the squares in the chessboard with two nodes connected by an edge if a knight can go from
one node to the other in one hop. So the problem of computing a Hamiltonian cycle in a graph
is a generalization of the problem of finding an open knight’s tour.

2. Backtracking with Pruning.

The main thrust of the project is in making the recursive backtracking procedure that you used
for Knight’s Tour more sophisticated. Consider the backtracking procedure you used for the
Knight’s Tour problem and suppose that the procedure has found a path P thus far. Further
suppose that v is the last node in P . Now the procedure has to decide which node to visit next
after v. The procedure we implemented for the Knight’s Tour problem was not very clever about
this; it simply picked an arbitrary unvisited neighbor w and proceeded to visit w. However, to
speed up the procedure there are two things we should attempt to do: (i) not pick any node w

from which we have little hope of completing a Hamiltonian cycle and (ii) pick a node w from
which the likelihood of completing a Hamiltonian cycle is high. Item (i) is a way of pruning

away unnecessary search and if done well, will have a tremendous impact on the running time
of the procedure. The question then is whether there is a quick way of identifying “bad” nodes
w, that is, nodes w that we should try to avoid.

There are some heuristics that will help. First some terminology. Let s be the starting node
of the path P we have computed thus far. Let G be the given graph and let H be the graph
obtained by deleting the nodes in P from G. For w to be a good candidate the visit next, it
must be the case that there is a path in H from w to some neighbor of s that visits every node
in H exactly once. This implies several simple conditions that H must necessarily satisfy and if
H does not satisfy any of these conditions then visiting w is a waste of time. These conditions
are listed below.

(i) Connectedness of H−w: The graph obtained by deleting w from H must be connected,
otherwise there is no hope of finding a path in H from w to a neighbor of s that visits
every node in H . So the first test of whether w is any good, is checking the connectedness
of the graph obtained by deleting w from H . This check for connectedness is easy to do
via bfs or dfs. Specifically, you should consider adding a function called isConnected to
the graph class that tests if a given graph is connected and make a call to this function.
Recall that a graph is connected is there is a path between any two nodes in the graph.

(ii) The degrees of nodes in H: If H contains a path from w to some neighbor of s that
visits every node exactly once, it must be the case that every node in H has degree at least
2, with the possible exception of w and some neighbor of s. The second test of whether
w is any good is this check on the degrees of the nodes in H . If the degree check fails,
then there is no point in visiting w. You should consider implementing a boolean function
called degreeCheck as part of the graph class to check this condition.

(iii) Biconnectedness of H + s + (s, w): This is the test that is most difficult to imple-
ment, but this is also the test that will probably prune most successfully. The notion of
“biconnectedness” is a generalization of the notion of connectedness.

1



A biconnected graph is a graph from which at least two nodes have to be deleted to break
it up into disconnected pieces. Consider for example the three graphs shown below — the
first two are biconnected, the third is not. The graph on the left, the cycle with 5 nodes,
is biconnected because removing any one node leaves a path and we have to remove a
second node to break this up into pieces. The graph in the middle, the grid graph, is also
biconnected and in fact 3 nodes have to be removed to disconnect it. The graph on the
right is not biconnected because you can remove just one node, the one that is shared by
the two cycles, and we’ll end up with two disconnected pieces.

Biconnectedness is important for network designers who want their network to be bicon-
nected so that failure of a single machine in the network is not enough to break up the
network into pieces that cannot talk to each other. How is biconnectedness relevant to us?
As mentioned before, if w is a good candidate to visit next, it must be the case that there
is a path in H from w to some neighbor of s that visits every node in H exactly once. This
means that the graph T obtained from H by adding the node s to it (along with all inci-
dent edges) and an edge (s, w) contains a Hamiltonian cycle (see figure below). It should
be obvious to you that any graph that contains a Hamiltonian cycle is also biconnected.
Hence T ought to be biconnected. Therefore if we construct T , test for biconnectedness,
and discover that it is not biconnected, then we know for certain that w is not a good
candidate to visit next.

w

s

The graph T

H

You should consider implementing a function isBiconnected to test if a given graph is
biconnected. Before committing to visit w, you should test if T is biconnected. If T is not
biconnected then visiting w is a waste of time and a portion of the search can be pruned.
Details of how to implement isBiconnected are given in the following section.

2



Note that even if H and w satisfy all three of the conditions above w might still be a bad
choice. However, if H and w do not satisfy any of the above three conditions we know for sure
that w is a bad choice and we can prune it right away.

3. Testing biconnectivity of graphs

It turns out that biconnectivity of a graph can be easily tested by modifying dfs. Define a
cutpoint of a graph as a node whose removal breaks up the graph into disconnected pieces. From
the definition of a biconnected graph it follows that a biconnected graph has no cutpoints. So
to test for biconnectivity is equivalent to testing for cutpoints. If a graph contains no cutpoints,
then it is biconnected; otherwise, if it does contain a cutpoint, it is not biconnected. We now
show how to modify dfs so that it identifies any cutpoints the graph might contain.

First recall how dfs works. At a node v, dfs scans the neighbors of v and if it encounters a
neighbor u that has not yet been visited then it starts dfs at u. The edge (v, u) becomes a tree

edge, an edge in the dfs tree connecting the parent v with u the child. On the other hand, if dfs
encounters a neighbor u that has been already visited, it simply skips to the next neighbor. In
this case the edge (v, u) is called a back edge. The key property of the back edge (v, u) is that u

is an ancestor of v in the dfs tree.
Thus dfs classifies edges into tree edges (edges that connect a node to a child in the dfs

tree) and back edges (edges that connect a node to an ancestor in the dfs tree). We can then
characterize cutpoints as follows. Suppose that we start the dfs of a graph at a node A and
suppose that T is the dfs tree of the graph. Note that T is rooted at A. Then for any node x:

(i) if x is the root A then x is a cutpoint iff x has more than one child in T .

(ii) if x is not the root A, then x is a cutpoint iff x has a child y such that there is back edge
from y or any descendent of y to a proper ancestor of x.

The explanation for item (a) is that if the root A has two (or more children) then deleting A will
disconnect the children. The explanation for item (b) is that if there are no back edges from y

or any descendent to a proper ancestor of x then deleting x disconnects the subtree rooted at y

from the rest of the graph.

1 2 3

4 5 6

7 8 9

10 11 12

3



1

2

3

4

5

6

7

8

9 10

11

12

For example, look at the graph at the bottom of the previous page and its dfs tree above. I
have shown the back edges also (in orange) in addition to the tree edges. First note that the
root of the dfs tree has only one child and hence it is not a cutpoint. Now let us use the above
characterization to check if some other node, say 5, is a cutpoint. 5 has two children 4 and 6
and there is a back edge from the subtree rooted at 4 going all the way up to 1 and there is a
back edge from 6 going up to 4. Hence, 5 is not a cutpoint. It is easy to verify, using the same
idea, that the graph has no cutpoint and is therefore biconnected.

The question now is simply how to use this characterization to efficiently determine if a node
x is a cutpoint. The main idea is to modify dfs so that it maintains two additional pieces of
information per node. Specifically, it maintains a dfs number for each node which is simply a
numbering of the nodes that indicates the order in which the nodes were visited. The root of the
dfs tree has dfs number 1, the node visited next has dfs number 2, the next node has dfs number
3, and so on. Let us denote the dfs number of a node v by d[v]. In addition, it maintains the
low number for each node defined as

low[v] = min{d[v]} ∪ {d[w] | (u, w) is a back edge for some descendent u of v}.

Thus the low number of a node v is either the dfs number of v or the smallest dfs number of
an ancestor to which there is a back edge from some descendent of v. There are two things you
now need to figure out:

(i) What is the connection between the low numbers and cutpoints?

(ii) How are the low numbers computed efficiently by dfs.

These and other matters related to the testing of biconnectedness will be discussed in class
(Monday 12/2).

4



4. Testing your project.

I’ll make some small graphs available on the course web site indicating whether they are Hamil-
tonian or not. You can use these to test your project as it develops. A week before the due date
(12/6) I’ll post four larger graphs, g1, g2, g3, and g4. You are expected to run your program
on each of these and submit files g1.out, g2.out, g3.out, and g4.out. g1.out should contain
either a Hamiltonian cycle for graph g1 or a message saying that g1 has no Hamiltonian cycle.
Similarly, g2.out, g3.out, and g4.out

5. Grading your project.

The grading scheme for your project is simple. You get 15 points (out of 75) if your project runs
correctly on a small graph (of our choosing). You get 15 addition points for each large graph g1,
g2, g3, or g4 that your program is able to process successfully. The key to doing well is therefore
making your program as fast as possible. There are absolutely no other design requirements
your project needs to satisfy. This means that you can throw away everything from your current
graph class implementation that you think might slow it down. For example, the graph class
need not be templated. The graphs I will provide for testing have positive integer labels for the
nodes. This also means that the function getIndex can be done away with. More than anything
else, your strategies for pruning the search space will affect the running time of the function.
You are most welcome to implement any strategies you come up with, besides the three I have
listed in Section 2 of this handout.

6. Overall organization.

Submit the following files: graph.h, graph.cxx, node.h, node.cxx, edge.h, edge.cxx, and
driver.cxx. The graph class should contain functions such as isConnected, degreeCheck,
isBiconnected, and HamiltonianCycle. The file driver.cxx should contain code to read and
construct the graph, a call to the HamiltonianCycle function, and finally some code to print
the Hamiltonian cycle (or a message saying no Hamiltonian cycle exists).

In addition to these files that contain your code, you should also have a README file that
clearly tells us about any known errors your programs have and also lists all required features
not implemented.

All of these files should be in a directory that you will have to submit by 5 pm on 12/13/02.

5


