Chapter 1

Introduction to Approximation
Algorithms

A decision problem is a problem II such that every instance I of IT has a “yes/no” solution. An
algorithm A that solves IT produces a correct “yes/no” answer for each instance I of II.

Every instance I of an optimization problem 11 has a non-empty feasible set of solutions, denoted
Fri(I) such that associated with every feasible solution, s € Fi(I), there is a non-negative rational
cost, denoted Cyy(I,s). Any feasible solution that optimizes Cy(I, s) is called an optimal solution
for I, denoted OPT1(I). An optimization problem II can either be a maximization problem or a
minimization problem and depending on this OPTy;([) is a feasible solution that either maximizes
cost or minimizes cost.

Typically, the following problems related to II have polynomial time solutions:
e Determining if a given instance I is a legal instance of II.

e Checking if a given solution s is feasible for a given instance I (that is, determining if s €
Fr(I)).

e Given I and a feasible soltion s, determining the cost C(, s).

So all of these problems are easy and the hardness of II arises from the fact that Fr(I) is very
large and there is no known efficient way of searching Frj(I) to find an optimal feasible solution.
Specifically, the optimization problems we will consider will be all be NP-hard. What does it mean
for an optimization problem to be NP-hard?

We can view an optimization problem II as a decision problem by attaching to each problem
instance I a rational B. So each instance of the decision version of II is a pair (I, B). If I is a
maximization problem, then its decision version asks: Does I have a feasible solution s with cost
Cu(Il,s) > B? If II is a minimization problem, then its decision version asks: Does I have a
feasible solution s with cost Cy(I,s) < B?. Given this, the following propositions are obvious.

Proposition 1 If an optimization problem I can be solved in polynomial time, then its decision
version can also be solved in polynomial time.

2 CHAPTER 1. INTRODUCTION TO APPROXIMATION ALGORITHMS

Proposition 2 If the decision version of an optimization problem II is NP-hard, then II is also
NP-hard.

So whenever we talk about an optimization problem being NP-hard, we are actually talking about
its decision version being NP-hard.

An algorithm A is a factor-f approzimation algorithm for a minimization problem IT if
e A runs in poly-time, and
e For every instance I of II, A finds a feasible solution s such that

Cu(l,s) < f - OPTu(l). (1.1)

Note that f > 1. If IT is a maximization problem, then A is a factor-f approzimation algorithm if
A runs in polynomial-time and for every instance I of II, finds a feasible solution s such that

Cu(l,s) > f- OPTr(I). (1.2)

Note here that f < 1.

We will now discuss easy approximationm algorithms for some well-known problems. The table
below shows the problems we will consider and the approximation factor f that the algorithms we
present will achieve. Roughly speaking, these are the best known approximation factors for each
of these problems.

Problem, IT Factor f
Graph Coloring O(n) for c < 1
Set Cover O(lgn)
Cardinality Vertex Cover 2
Minimum Makespan (I+¢)
Knapsack (I+¢

The approximation factor (1 + €) for Minimum Makespan and Knapsack problems, means that
for every € > 0, there is an algorithm A, such that A, produces a solution that is within (1 + €)
times the optimal. So technically speaking, here we have a family of algorithms rather than a single
algorithm. This family of algorithms is called a polynomial time approximation scheme (PTAS).
The running time of a PTAS depends inversely on € and we distinguish the case when the running
time of a PTAS is a polynomial function of 1/e. A PTAS for which this is the case is called a fully
polynomial time approzimation scheme (FPTAS). A PTAS and an FPTAS will be defined more
precisely later. We will present an FPTAS for Knapsack and a PTAS for Minimum Makespan.

Example of Approximation algorithm. A wvertez cover for a graph G = (V, E) is a subset
V' C V such that for every edge {u,v} € E, either u € V' or v € V' (or both). If G is a vertex-
weighted graph with weight function w : V' — QT then the weight of a vertex cover is simply the
sum of the weights of the vertices in it.

Vertex Cover (VC)

Input: A vertex-weighted graph G = (V, E) with weight function w: V — Q™.

Output: A vertex cover of G with minimum weight.

In the “cardinality” version of the problem, called Cardinality Vertex Cover (CVC), vertices
have unit weights. This essentially means that we are looking for a vertex cover with fewest vertices
in it.

We want to come up with an algorithm A such that for every instance I of CVC, A produces
a vertex cover s such that

Cevel(l,s) <2-OPTcyc(I) (1.3)

The problem with showing such an inequality is that we don’t know anything about OPT¢cy ¢ (I).
This is the fundamental problem faced by people designing approximation algorithms Typically,
to get around this problem, we first show a lower bound LBy (I) on OPTy(I). That is,

LBy(I) < OPTIn(I) for all T (1.4)

and then show that
Cn(I,s) <2-LByp(I) <2-0PTu(I) (1.5)

It turns out that it is extremely easy to obtain a lower bound on OPTeyc(I).

A matching M in a graph is a set of edges, no two of which share an endpoint. A mazimal
matching is a matching that is maximal with respect to inclusion, that is, adding any other edge
to the maximal matching makes it not a matching.

Algorithm for CVC
1. Compute a maximal matching M of G.

2. Output the endpoints of the edges in M.

Lemma 3 The above algorithm produces a vertex cover of G.

Proof: Let V' be the set of endpoints of the edges in M. If V' is not a vertex cover, then there
is an edge {u,v} € E such that u ¢ V' and v ¢ V'. Hence, {u,v} can be added to M and it
would still be matching. This contradicts the fact that M is a maximal matching. Therefore V' is
a vertex cover. O

Lemma 4 For any matching M of G and any vertex cover V' of G, |M| < |V'|.

Proof: For every edge in M, there is at least one of its end points in V'. Since M contains edges
no two of which share an endpoint, | M| < [V/]. O

A corollary of the above lemma, is that if OPT is the size of a minimum cardinality vertex
cover of G and M is a maximal matching, |[M| < OPT If we let V' denote the output of the
above algorithm, we have that |V'| = 2. |M| therefore |[V'| <2 - OPT. This shows that the above
algorithm is a factor-2 approximation algorithm for CVC.

Remarks:

e Rather than use OPTy(I) we will use OPT when II and I are clear from the context. In
fact, we will use OPT to denote not only the optimal cost, but also the optimal solution
sometimes.

e A factor-2 approximation can also be achieved for the usual (weighted) vertex cover problem.

CHAPTER 1. INTRODUCTION TO APPROXIMATION ALGORITHMS

Chapter 2

Set Cover: Greedy Algorithm

In the last lecture we studied a factor-2 approximation algorithm for Cardinality Vertex Cover
(CVC). There are three questions one can ask about that algorithm and its proof.

1. Is our analysis tight? In other words, is it the case that our algorithm, for some instance,
produces a vertex cover whose size is twice the size of the optimal.

The answer is yes. Consider the complete bipartite graph K, ,. The algorithm produces a
vertex cover of size 2n, while OPT = n.

2. Is there some other algorithm that uses the same lower bound (maximal matching), but
produces a factor-f approximation for some f < 27

The answer is no. Consider the complete graph K, for odd n. In this case, any maximal
matching has size (n — 1)/2 and OPT =n — 1.

3. Is there some other algorithm that produces a better than 2 approximation factor?

No one knows. This is one of the most tantalizing open questions in this area.

Set Cover. Our next example is a problem for which we will present a factor-O(logn) greedy
approximation algorithm.

SET COVER (SC)

Input: Given a universe U of n elements and a collection C' = {S1, S,, Sk} of subsets of U,
and an assignment ¢ : C — Q7T of costs to the subsets in C.

Output: A subcollection C’ with the minimum cost that covers the universe.

A subcollection C' covers U if | Jg.» = U. The cost of a subcollection is simply the sum of the
costs of the subsets in it.

Example. Suppose U = {1,2,3,4,5,6,7,8}, C = {{1,4},{2,4,7},{3,7,8},{5,6,8},{357}},
and the costs of the sets in the collection are 3, 4,2, 1,7 respectively. A subcollection C’ that covers
U is {{1,4},{2,4,7},{5,6,8},{3,5,7}} and it has cost 3+4 + 147 = 15.

There is a simple “greedy algorithm” for the set cover problem. At each step pick a subset that
has the smallest cost per new element that it covers. This is also the same as saying “pick a subset
that covers the most number of new elements per unit cost.”

L. A=

6 CHAPTER 2. SET COVER: GREEDY ALGORITHM

2 while (U # 0) do

3. Pick a set ; that minimizes GOS0(5:)

4. A=AU{Si}

5 U=U-35;

6 output A

How do we show that this algorithm achieves a factor-O(log n) approximation? Let e, e, ..., e,

be the order in which elements are covered by the above algorithm, with ties broken arbitrarily.

Each element e, € U is first covered by some set S; in Step 3. Define the price of e, denoted

price(eg) as C‘gzsﬁg}gl”‘) We can prove the following lemma.

Lemma 5 For each k, 1 <k<mn,

OPT

) < —F .
price(ex) < k1

Lemma 6
cost(A) < Hy, - OPT,

where Hy, is the Harmonic number 1 +1/2+1/3+ .-+ 1/n.

Proof:

n n
cost(A) = Zprice(ek) < OPTZ 1/(n—k+1)=H,-OPT.
k=1 k=1
O
Proof: (Lemma 1) Let
C= {SilaSiQaSisa'--aSit}

be a minimal subcollection of OPT that covers e, exi1,...,e,. Let E = {e1,ea,...,ex_1} and let
E' = {ex, ek t1,---,en}. For eg € E' let S;; be the first set that contains e,. Define

Cost(S;.)
flee) = . :
|S’ij —E— 5, — 5, _"'_S'ij—1|

Note that .
Z f(eg) = cost(C) < OPT
=k

and so there is some e; € E' such that f(e;) < OPT/(n —k + 1).

Just before the greedy algorithm covers eg, none of the sets Sj,,S;,,--.,S; have been picked
by the algorithm, because elements in E’ are still uncovered. If at this stage Si; were chosen, it
would assign to element ey the price

Cost(S;.
price(eg) = Cost(S:,) < fle)) <OPT/(n —k+1).
‘Sij —-FE |
Since the greedy algorithms choses to pick a set that minimizes “price” and ey is the next element
covered, price(eg) < price(ey) < %(n —k+1). 0

Question : Is this analysis tight? Yes. Consider the following example. Let U = {1,2,...,n}.
Let C = {S1,52,.-.,Sn,Sn+1} be a given collection of subsets of U such that S; = {i} for 1 <i <mn
and S, 11 ={1,2,...,n}. Let cost(S;) =1/i for 1 <7 < n and let cost(S,+1) = 1 + e. The greedy
algorithm picks {S1, Se,..., Sy} for a cost of H,, while OPT = (1 +¢).

CHAPTER 2. SET COVER: GREEDY ALGORITHM

Chapter 3

FPTAS for Knapsack

KNAPSACK:

Input: Objects ai,a2,...,a, with positive integer sizes given by size(a;), 1 < i < n, positive
integer profits given by profit(a;), 1 < i < n, and a knapsack of capacity B € Q.

Output: A collection of objects with total size at most B and maximum total profit.

Note that the total size of a collection simply refers to the sum of sizes of the objects in the
collection and similarly, the total profit of a collection refers to the sum of profits of the objects in the
collection. In other words, we want to find a set A" C {a1, a2, ..., a,} such that > a;en Size(a;) < B

and), 4 profit(a;) is maximized.

Simple Dynamic Algorithm For Knapsack Let P = maz{profit(a;) |1 <i <n}. Since we
have n objects, nP is the maximum total profit possible. Recall that profits are positive integers.
For each p € {1,2,3,...... ,nP}, let A, denote the size of a smallest set with profit equal to p.
Suppose we have computed A, for every p € {1,2,....,nP} then we just have to find largest p such
that A, < B. To compute the Ap’s, we first compute A;, where, 1 <i <n,p € {1,2,...,nP} and
A; p is defined as the size of a smallest subset of {a1,as,...,a;} with profit equal to p. Note that
“size of a subset” here does not refer to the cardinality of the subset, it refers to the sum of the
sizes of the objects in the set. Computing A; , is essentially filling an n x n.P table. Also note that
Ap = A, for each p.
It is obvious that for each p € {1,2,...,nP},

A = 0 if p # profit(a;)
Y2 7 size(a;) if p = profit(a;)

For each 7,2 < i <m,and p € {1,2,3,....,nP}

min{A; 1, profit(e;) + si2e(a;), Ai1p} if profit(a;) <p
Aip = ¢ min{size(a;), Ai_1,p} if profit(a;) =p
Ai 1, otherwise

This step of computing A;, for any ¢ and p takes O(1) and since we have an n x nP table to fill
the total time taken is O(n%P).

Now note that this is not a polynomial time algorithm in general. For example, assume that
each of the object sizes can be represented in ¢ bits for some constant c¢. Further assume that

9

10 CHAPTER 3. FPTAS FOR KNAPSACK

P = profit(a;) for all i and P = 2". Then the input can be represented in O(n?) bits, while
the running time of the algorithm is O(n? - 2"). Specifically, such an algorithm is said to run in
pseudopolynomial time. The notion of pseudopolynomial running time can be precisely defined as
follows. Let I be an instance of problem and I, denote I expressed in unary. If an algorithm for
the problem runs in time polynomial in |I,| then the running time is said to be pseudopolynomial.

We now convert this dynamic programming algorithm into FPTAS (Fully Polynomial Time
Approximation Scheme) for KNAPSACK. Like with other constructions of FPTASs and PTASs
here we trade off accuracy for running time.

Algorithm

1. “Shrink” the profits by assigning to each a; assign a new profit:

profit(a;) |

profit/(a) = |72

for some fixed positive K to be chosen later.

2. Solve KNAPSACK using the new profits and using the dynamic programming algorithm
discussed earlier.

3. Report the subset produced as the solution.

Analysis
Let O be an optimal solution of KNAPSACK and let O’ be solution produced by above algo-
rithm. Clearly,

OPT = Z profit(a;) and Z profit(a;) < OPT
a; €0 a; €0’

Since O’ is optimal in shrunken instance, we have
profit(a;) profit(a;)
—_— > —.
3 (Profitte) g profit(en),
a; €0’ a; €0

We can bound the lefthand side (LHS) above as follows:

LHS = Z L]%WJ < Z PTOJ;?(%) _ profIZ';f(O’)_
a; €0’ a; €0’

Similarly, we can bound from below the righthand side (RHS) by

profit(a; profit(a; rofit(a; OPT
RHS = Zl-ifK()JZ Z(iﬂ{()—1)2 Zpifz{()—nz—K —n.
a; €0 a; €0 a; €0

Thus
, profit(0") S orT
K - K

n

11

and multiplying both sides by K we get
profit(0') > OPT — Kn.

For a given € > 0, choose K such that Kn = Pe. This implies that
profit(0") > OPT — Pe

and without loss of generality we can assume that P < OPT. Therefore,

profit(0') > OPT — ¢ - OPT = (1 — ¢)OPT.

Running Time Analysis The dynamic programming algorithm takes O(n?[£) time now and
since K = £¢, the running time of the algorithm is O(n3/e). Therefore the algorithm is polynomial
in 7 and polynomial in 1/e.

So we have presented an FPTAS for knapsack. The precise definition of a PTAS and an FPTAS
is the following. For a minimization problem II, an algorithm A is a PTAS if, for every ¢ > 0 and
for every instance I of I, A produces solution s such that

Costr(1,s) < (14+¢€)OPT.

The running time of the algorithm is polynomial in the size of the input, but depends arbitrarily
on €. A FPTAS additionally satisfies the requirement that the running time depends polynomially
on 1/e. A PTAS and an FPTAS are defined similarly for a maximization problem except that the
algorithm produces a solution s such that

Costr(I,s) > (1 —€)OPT.

12

CHAPTER 3. FPTAS FOR KNAPSACK

Chapter 4

PTAS for Minimum Makespan

MINIMUM MAKESPAN (MMS):
INPUT: A set of n jobs with processing times pi,po,...,p, € QT and m € ZT.
OUTPUT: An assignment of the given jobs to m machines with minimum makespan.

Consider an arbitrary assignment of the n jobs to the m machines. Let J; be the set of jobs assigned
to machine 7, 1 < ¢ < m. The completion time of machine i, denoted T;, is T; = ZjeJ,- pj- The
makespan of the assignment is maxi<ij<n T;-

There are two easy lower bounds on the optimal makespan, OPT:

1. The largest processing time of any job.

LBl = 3
ESEA

2. The average completion time of a machine.

_ d1<j<nPi
=

LB2

It is clear that LB1 < OPT and LB2 < OPT and so if we let LB denote the combined lower
bound, LB = max{LB1,LB2} < OPT.
Here is a simple factor-2 approximation algorithm.

1. Order jobs arbitrarily.
2. Process jobs in order, assigning each job to machine with smallest completion time, currently.

Claim: Let T be the makespan of the assignment produced by the above algorithm, then 7' <
2-0PT.

Proof: Let machine 7 be the machine with maximum completion time. Let job 7 be the job which is
assigned last to machine 7. Suppose the completion time of machine %, just before job j was assigned
to it is . Then, every machine has processing time at least ¢, implying that >, j<nPj = M-t
This implies that

S Elgjgnpj >

m

LB t.

13

14 CHAPTER 4. PTAS FOR MINIMUM MAKESPAN

Also, we know that LB > LB1 > p;. Then we have T =t +p; < LB+ LB =2-LB<2:-0OPT.
O

PTAS for Minimum Makespan: We want to devise a factor-(1 + €) approximation algorithm
for MMS for any € > 0. In order to do this, we first establish a connection between MMS and Bin
Packing.

BIN PACKING
INPUT: ¢t € Q" and n objects of sizes a1,az,as3,...,a, € (0,1].
OUTPUT: Minimum number of size-t bins needed to pack the objects.

Example: Let the size of the bins be t = 1. Suppose n = 5 and let the sizes of objects be a1 = 0.7,
az = 0.3, a3 = 0.4, ag = 0.5, and a5 = 0.4. We can then pack {ai,as} in one bin, {a3,as} in a
second bin , and as by itself, in a third bin, so the number of bins used by this packing is 3.

The Bin packing problem is well-known to be NP-complete. A connection between MMS and Bin
packing is as follows:

n jobs with processing times p1, pa, . . ., pp can be assigned to m machines with makespan
t iff n objects with sizes p1,p2,...,p, can be packed in m size-t bins.

Let I denote the set {p1,p2,...,pn}. Let BINS(I,t) denote the fewest size-t bins needed to pack
objects of sizes I. The connection between MMS and Bin packing implies:

OPT = min{t|BINS(I,t) < m}.
Also note that OPT € [LB,2 - LB] and so
OPT = min{t € [LB,2 - LB)|BINS(I,t) < m}.
Therefore, an algorithm for MMS that does not really work is:
1. Compute LB.
2. Do binary search in the range [LB,2 - LB] to find

min{t € [LB,2 - LB||BINS(I,t) < m}.

This algorithm does not work for two reasons:

1. The query BINS(I,t) < m cannot be answered in polynomial-time because the Bin packing
in NP-Complete.

2. The number of iterations of the binary search is not polynomial in the input size.

To get around this problem, we connect MMS to a restricted version of Bin packing. This
restricted version of Bin packing, that can be solved in polynomial time is as follows, assumes that
the n object have k distinct sizes for some fixed k. Such a problem can be solved by dynamic
programming in O(n?k) time.

15

Suppose € > 0 is fixed and let ¢t € [LB,2 - LB]. We know that all objects have size at most ¢.
Partition the range (0, ¢] into the following intervals:

(Qk){del+€D,Pdl+€%ku+fy)pn,Pdl+€ﬁJdl+€ﬁ+ga

where
te(1 4 €)F <t < te(1 4 €)F L.

Construst a new instance of the Bin packing problem as follows:
1. Throw away objects of size less than te.

2. For each of the remaining objects, round down the size of the object to the left endpoint of
the interval to which it belongs. Specifically, for an object of size p;, find an 7 such that

pj € [te(1 + €)', te(1 + €)*)

and replace p; by te(1 + €)' in the new instance of bin packing.

Given that there are k left endpoints in (0, ¢], we have and instance of Bin packing with k + 1
distinct sizes. Now k can be related to € as follows. Given that k satisfies

te(14 €)F <t < te(1+ €)1,

we obtain .
k <logy.. (—) <k+1,
€

o)

So, we can solve this new instance of Bin packing in time

implying that

O(n2L1081+e(%)J+2)_

Now we will use the solution of the new instance get a solution to the original instance.

16

CHAPTER 4. PTAS FOR MINIMUM MAKESPAN

Chapter 5

PTAS for Minimum Makespan and IP
Formulations

Call each object j with p; > te a large object and call the remaining objects, small objects. For
each large object j, we have rounded p; down to pg- = te(1 + €)* for some integer i > 0 such that
p; € [te(1+ €)', te(1+ €)"™). Now, notice that p;/(1 +€) < pj < pj. As mentioned in the previous
lecture, we can compute, in polynomial time, an optimal solution of the restricted version of Bin
packing. If we expand the size of each bin in this packing from ¢ to ¢(1 + €), then we get a packing
of the large objects restored to their original sizes. To pack the small objects, each of size in the
range (0,te), we use a greedy algorithm. In other words, we try to fit each small object into an
existing bin, opening a new bin only when no old bins have space left for the object. So now we
have a bin packing of the original instance of the problem. Let «(I,t,€) denote the number of bins
used in this packing.

Lemma 7 o(I,t,¢) < BINS(I,)

Proof: There are two cases depending on whether the greedy algorithm used to pack the small
objects, used any new bins or not. First, suppose that the greedy algorithm used no new bins. This
means that a(1,t,€) is equal to the optimal number of i bins used to pack the restricted instance of
the problem. Note that in this instance we are packing only large objects and each of these objects
has shrunk in size from p; to p;-. This implies that «(I,t,e) < BINS(I,t).

Suppose the greedy algorithm did use new bins. This means except the last opened bin, all
other bins are full at least to the extent . Hence, in any bin packing of the original instance with
size-t bins, we must use at least (I, ¢, €) bins. This implies that «(I,t,e) < BINS(I,t). 0

We would like to view a(I,t,€) as a quickly computable approximation for BINS(I,t). Specif-
ically, we replace the query “Is BINS(I,t) < m?” by “Is a(l,t,e) < m?” The algorithm now is
essentially doing a binary search in [LB,2LB] for min{t | a(I,t,e) < m}.

Since a(I,t,e) < BINS(I,t) this implies the following:

1. If query BINS(I,t) < m has a YES answer, then the query a(I,t,€) also has a YES answer.

2. If query BINS(I,t) < m has a NO answer, then the query a(I,t,¢) < m may have a YES
or NO answer. However, if a(I,t,¢) < m has a YES answer we know that BINS(I,t(1+¢))
has a YES answer.

17

18 CHAPTER 5. PTAS FOR MINIMUM MAKESPAN AND IP FORMULATIONS

Let t* = min{¢ | a(1,t,e¢) < m}. The above remarks imply that t* < OPT < ¢*(1 + €). Recall
that OPT = min{t | a(I,t,e) < m}. So, if we could find t*, we could return a = t*(1 + €) as the
answer and we would have a < OPT(1 + ¢). However, even though we can answer the query “Is
af(l,t,e) < m” in polynomial time, we still cannot do the binary search in polynomial time. Here
is how we get around this problem.

In each iteration of the search, we shrink the search interval by 1/2. The search interval is
originally [LB,2 - LB] and so after k iterations, the search interval is of size LB/2*. We stop when
the interval size is at most eLB. This implies that

I;—kB <eLB < %
and hence, k > logy L > k — 1. This implies that k = [log, 1.

Note that the right end-point of every search interval corresponds to a YES answer to the query
“Is a(I,t,e) < m?” Furthermore, for any ¢ smaller than the left end-point of the search interval,
the query has a NO answer. So when we stop at a search interval [a, '] we know that o’ <t* <b'.
So we return the right end-point b’ as the result of the binary search. Since v/ — a’ < ¢- LB, we
have that

V<t'+e- LB <t +et* <t (l+e).

The result &' of the binary search get multiplied by (1 + €) before being finally returned, and so
V(1+4e€) <t*(1+€)? < OPT(1+ €)%
For € < 1, €2 < € and so for € < 1,
b'(1+¢€) < OPT(1 + 3¢).

Also note that for € > 1, we might as well use the simple greedy algorithm for MMS.
The running time of of this algorithm is

o(log, - | n2(Moes éHl)),
€

This is because there are [log, %-| iterations of the binary search and in each iteration the re-

stricted Bin packing problem is solved in O(n*(081+ %Hl)) time. Since the running time depends
exponentially on %, the algorithm is a PTAS and not an FPTAS

Integer LP formulation

All the combinatorial optimization problems we have seen so far have simple integer linear programs
formulations. Here are some examples.
SET COVER
Let z;, 4 = 1,..., k be indicator variables that denote whether S; is in the solution or not. In other
words, z; = 1 if S; belongs to the solution, and z; = 0 otherwise.

SET COVER consists of minimizing

k
Z cost(S;) - x;
i=1

19

subject to the constraint that each element in the universe if covered. This is equivalent to saying
that for each element j € U
Z ZT; > 1.

ij€S;
Thus SET COVER is equivalent to the integer linear program (ILP):

k
min Z cost(S;) - x;
i=1

d oz > lforallj=1,2,...,n
1:J€S;
z; € 0,1foralli=1,2,... k

KNAPSACK
Define z;, 1 = 1,2,...,n as indicator variable for each object. Then the knapsack problem can be
stated as the following maximization problem:

n
max Z profit(a;)z;
=1
n
Zsz’ze(ai)-xi < B
i=1

z; € {0,1}foralli=1,2,...,n

The first constraint forces the total size of the objects chosen to be no greater than the capacity
B of the knapsack.

MINIMUM MAKESPAN
Let z;;, 1 = 1,2,...,n, j = 1,2,...,m be the indicator variables telling us if job 4 is assigned to

machine j. Then
n
Z Tij - Di
i=1

is the completion time of machine j. Let T' be a variable whose value is below by the completion
time of all the machines. In other words,

n
TZZ:I:ij-pi, forall j =1,2,...,n.
=1

Then the MINIMUM MAKESPAN problem is equivalent to:

min T

20 CHAPTER 5. PTAS FOR MINIMUM MAKESPAN AND IP FORMULATIONS
m
Y wy = lforalli=1,2,...,n
j=1

n
Z$szz < Tforal]j:1,2,...,n
=1

m

Tij {0,1} forall: =1,2,...,nand j =1,2,...,m

The first constraint ensures that every object is assigned to exactly one machine. In each of these
examples, the last constraint forces the solutions to be integral. This constraint is what makes the
problems ILP, rather than just LP.

Chapter 6

Elementary LP Theory

The integer program for SET COVER is the following;:
Let z; be an indicator variable for set S;.
Minimize

k
in - c(S;)

subject to
Z z; > lforj=1,2,---,n
jES;
z; € {0,1}fori=1,2,---,k
The corresponding LP-relaxation replaces z; € {0,1} by z; > 0 for each i = 1,2,---, k. Recall that
z; < 1 is unnecessary.

Here is a deterministic rounding approximation algorithm for SET COVER that uses the above
LP relaxation. Let f; be the frequency of element j = 1,2,---,n (that is, the number of sets S;
that j appears in). Let f = max; f;. The algorithm provides a factor-f approximation for SET
COVER.

Algorithm

1. Solve the LP-relaxation (using your favorite polynomial-time LP solver).

2. For any variable z; > % in the solution of the LP-relaxation computed in step 1, round z; to
1. Round all other z;s down to 0.

Lemma 8 The above algorithm produces a feasible solution for SET COVER.

Proof: Note that for each element 7 = 1,2,...,n, the constraint

IR

1:jES;
contains f; terms (one term for every set j belongs to). Therefore, the maximum number of terms
in any such constraint is f. This implies that for each such constraint, there is a variable x;, 7 € S;,

such that z; > 1/f; > 1/f. This implies that z; is rounded to 1 by the above algorithm and hence
the inequality continues to be satisfied even after the rounding step, implying feasibility. O

21

22 CHAPTER 6. ELEMENTARY LP THEORY

Lemma 9 The cost of the solution produced by the above algorithm is at most f - OPT.

Proof: First note that if C* is the optimal cost of the solution to the LP-relaxation, then
c* < OPT

This follows from the fact that the feasible region of the LP-relaxation contains everything that is
feasible for original SET COVER IP.

Let C be the cost of the solution produced by our algorithm. Let z = (z1,%o,...,z,) denote
an optimal solution of the LP-relaxation and let ' = (2!, z),...,z]) denote the solution after
rounding. Now

Also note that
z; < f -z

This implies that
k
C<f> cSi) zi=fC"<f-OPT.
i=1
O
How good is this algorithm?
1. It yields a factor-2 approximation algorithm for Vertex Cover.

2. This is incomparable to the O(log n)-factor greedy approximation algorithm for Set Cover
discussed earlier. (Performance varies depending on the value of f.)

LP-Based Techniques
LP-based techniques can be partitioned into two groups:

1. Algorithms that work by rounding:

e Simpler, more intuitive.

e More costly because solving an LP is relatively costly.
2. Primal-dual schema algorithms:

e They are based on LP-relaxation but eventually have combinatorial versions.
e Faster, because they are combinatorial.

e More amenable to fine-tuning.

Elementary LP Theory
An LP has a linear objective function subject to linear constraints. There are various forms of
writing LPs, such as standard, canonical, slack, etc.

23

Standard Form of LP
Minimize
n
> it
j=1

subject to

n
Zaija:j < bifori=1,2,---,n
j=1

Ly > 0f01‘j:1,2’...’n

All other forms of LP(maximization of objective,non-negativity and equality constraints,etc) can
be easily transformed into standard form.
More compactly, given ¢ € R, b € R™ and A € R™*", LP in standard form is

mincl z

subject to
Az < b,z > 0.

Note that the solution vector x belongs to R".

Geometric aspects of LP

The (m + n) constraints define a feasible region of the LP. Each constraint corresponds to an n-
dimensional half-space. Therefore, the feasible region is the intersection of (m + n) n-dimensional
half-spaces. It is well known that this is a convez polytope (in R").

If the LP has an optimal solution, then it has one at a vertex of the feasibility polytope. The LP
may not have an optimal solution because either

1. Feasible region is empty
2. Feasible region is unbounded

But this is not an issue for us as we will usually be working with non-empty, bounded feasible
regions.
There are three well known algorithmic techniques for solving an LP:

1. Simplez method (Dantzig, 1949): This is fast, but exponential in worst case.

2. Ellipsoid method (Khachiyan, 1979): Polynomial time, but expensive; this was an important
theoretical result showing that LP was in P.

3. Interior point methods (Karmarkar, 1980s): Polynomial time, it competes with Simplex. Its
worst case is large polynomial time.

Integrality Gap
Let II be an optimization problem, P be an IP for it, and L be an LP-relaxation of P. Let OPT(I)
denote the cost of an optimal solution of II for instance I. Let OPTy(I) denote the cost of the

24 CHAPTER 6. ELEMENTARY LP THEORY

optimal solution of L. For a minimization problem, OPT}(I) < OPT(I) for all I. The ratio

sup OPT(I)
I oPT;(I)

is the integrality gap of the (P, L) pair.
Examples
CVC: For K3, OPT =2 and OPT; = 1.5
= Integrality Gap for CVC > 2/1.5
MMS: Consider the case of 1 job (n = 1) of time P and m machines , OPT = P and OPTy = P/m

= Integrality Gap for MM S > m, ie. unbounded

Situations in which good integrality gap is guaranteed: Best possible integrality gap is 1.
In some cases, this is achieved. eg. Vertex cover for bipartite graphs.

Total Unimodularity. A square matrix B is unimodular if det(B) € {+1,—1}. A matrix A is
totally unimodular(TUM) if for every non-singular, square submatrix B of A, det(B) € {+1,—1}.

Theorem 10 Given an LP, min ¢’z subject to Az < b and z > 0, if A is TUM then every vertex
of the feasibility polytope is integral, provided b is integral.

Chapter 7

Total Unimodularity and Half
Integrality

7.1 A Quick Recap.

Last time, we looked at situations in which LP has integral solutions. Consider an LP:
min{cT z|Az < b,z > 0}

where ¢ € R*, b € R™, A € R™X"

Theorem 11 All vertices of the feasibility polytope are integral if A is totally unimodular (TUM)
and b is integral.

Proof: Any vertex v of the polytope is the intersection of atleast n-dimensional hyperplanes
described by the L.P. constraints. In other words, there exists an n X n matrix A; and by € R”
such that v is described by:

As-x = by

Note that some of these equations come from the non—negativity constraints. (Basically, we take
m + n of the inequalities and then we turn them into equalities.)

A1 b
1
det(4s)

Z

.adj(As)- bs

Recall,

n
det(A) = Eai]‘- A,’j, for any
7=1

where A;; is a cofactor of A and A;; is defined as follows:
Aij = (—1)i+j.det(Mij

25

26 CHAPTER 7. TOTAL UNIMODULARITY AND HALF INTEGRALITY

where M;; is called the “minor”.

An Ain
adj(4) = :
Anl Ann
If A is TUM, then det(4,) € {£1}.
Also, adj(A) is a matrix where A;; = {£1}.
It follows that if b is integral, then m. adj(As)- bs is an integral vector. O

7.2 Application of the Theorem

7.2.1 Maximum Matching Problem in a Bipartite Graph

Let G = (V, E) be a bipartite graph. Express the maximum matching problem on G as an L.P.
Let z, € {0,1} be an indicator variable denoting the presense of edge e in the solution:

max 5 Te

such that,
Z e <1, forveV

e isincident on v

and,
ze € {0,1}, fore€ E

The corresponding relaxation replaces z, € {0,1} by z, > 0.
Claim 1 This relazation always has an integral solution.

Also, consider the L.P. relaxation of the I.P. for the Vertex Cover (VC) problem.
min Z Cy" Ty
veV

such that,
Zy + Ty > 1, for each edge e = {u, v}

Ty, >0, foreachv eV

What is the matrix corresponding to contraints other than the non-negativity constraints?

Each row of the matrix corresponds to vertices in G and each column corresponds to edges in G.
An element A, € {0,1} represents whether an edge e is incident upon vertex v in G. This matrix
is also known as an incidence matriz.

Claim 2 The incidence matriz of a bipartite graph is TUM.

7.3. IMPLICATION OF THE THEOREM 27

7.2.2 Vertex Cover Problem

Likewise, consider an I.P. for the vertex cover problem of a bipartite graph. What does the matrix
look like?

Each row of the matrix corresponds to edges in G and each column represents vertices of G. An
element in the matrix tells us if an edge e is incident upon vertex v. This matrix is just the
transpose of the incident matrix.

Theorem 12 Let A be a matriz with entries in the set {—1,0,+1}, such that, each column has
atmost two non—zero entries. Suppose the rows of A are partitioned in two sets, namely, I, I,
such that,

1. If a column contains two mon—zero entries of the same sign then they appear in differnt
partitions.

2. If a column contains two non—zero entries of different signs then they appear in the same
partition.

Subject to the above conditions, A is TUM.

Proof: By induction on the size of sub—matrices.
Base Case:

Claim trivially true for a 1 matrix.

Inductive Case:

Consider a k x k submatrix C. There are two cases:

e If C has a column with all zeros then det(C) = 0 = C is singular.
e If C has a column with exactly one non zero entry. Let this entry be in position (,5). Then,
det(C) = (—1)i+j.Mij

where M;; is obtained by deleting row 7 and column j from C. An immediate implication
then is that det(C) € {0, £1}.

e All columns of C has two non-zero elements. This implies that the sum of all rows of C' in
I; = sum of all rows of C' in Is. Which, in turn, implies that the rows of C' are not linearly
independent, which implies that det(C) = 0.

O

7.3 Implication of the Theorem
A direct implication of the above theorem is that the incidence of a bipartite graph is TUM.
Corollary 13 The incidence matriz of any directed graph is TUM.

Proof: Denote each incoming edge with a +1 and outgoing edge with a —1. After that, the
application of the above theorem is trivial. O

28 CHAPTER 7. TOTAL UNIMODULARITY AND HALF INTEGRALITY

7.4 Half-Integrality of the Vertex Cover Problem

In this section we present a remarkable result due to G. Nemhauser and L. Trotter.
Definition 14 A point z € R" is half-integral if z; € {0, %, 1},Vie {1,2,...,n}
Theorem 15 Any vertex of the feasibility polytope of the vC problem is half-integral.

Proof: Assume the contrary. Hence there exists a vertex of the feasibility polytope of vC that is
not half-integral. Let z € R" be that vertex. Let

1 1
Vy= {z|§ <zi<l1l}, and Vo ={il0 < z; < 5}

We are assuming that V; UV_ # ¢ and = = (z1,...,Zn).
For € > 0, define two new points in R" as follows:

Tr; — € le€V+ T; + € 1f’l€V+
Yy =R x;+e ifieV_ , zi=< zi—e ifieV_
x; otherwise x; otherwise
Note:
y#ozte (7.1)
1
2=5(y+2) (7.2)

According to Claim 3 (proved subsequently), e can be made small enough so that both y and z are
feasible.

This implies that x is the convex combination of two points in the feasibility polytope.

The above in turn implies that z is not a vertex of the feasibility polytope. A contradiction.

So, x is half-integral. O

Claim 3 Given x,y,z and € in the above € can be made small enough so that both y and z are
feasible.

Proof: Since z is a vertex of the feasibility polytope, z is feasible. This implies that,
z; +x; > 1, for all edges {3,5}.

Consider all edges {i,j}, such that,

i t+z;>1
and pick € > 0 small enough so that all such edges

vty >1&z+2; > 1

Now, we consider constraints that hold tightly for z. In other words,

z;i+xz;=1
Look at such an edge {7,j}. The only possible cases are:

,’IZZ':.’BJ':%:>’L'¢V+UV,,jEV+UV,=>yi:Zi:.’Bi,yj:zj':.’Ej
xi>%;:vj<%:>z'€V+,jEV_:>yi:wi—e,yj:xj+6:>yi+yj:xi+:vj:1; Similarly, z; + z; = 1
Symmetric case to the above

O

Chapter 8

Randomized Rounding: Set Cover

Randomized Rounding
The main idea behind randomized rounding is the following

1 Solve the LP-relaxation in polynomial time

2 Interpret the solution obtained as a probability vector

This idea was proposed in the 1980s by Raghavan and Thompson to solve a problem in VLSI
Design Automation. We present two examples of randomized rounding: Set Cover and MAX-SAT.

Set Cover

We now discuss a randomized algorithm that gives a O(log n) approximation algorithm for the set
cover problem. Recall that the LP-relaxation for the set cover problem can be stated as follows:

k
min Z cost(S;) * ;
%
subject to the constraints

in > 1foreach j €U
i:j€S;

v

Oforeachi=1,2,...,k

Ty

Now carry out the following two steps
Step 1: Solve the LP-relaxation and let = (z1, 2, ..., zx) represent the solution.
Step 2: Interpret each z; as a probability and perform the following:

for ¢ =1,2,...,k include S; in the solution with probability z;
Another way of stating the above is

for i =1,2,...,k do set y; = 1 with probability z;

29

30 CHAPTER 8. RANDOMIZED ROUNDING: SET COVER

Here y/s represent the integral solutions for the set cover ILP.
Some remarks about the above chosen method:

e The elements in S; are chosen independently
e The resulting solution need not be feasible

Now we proceed to analyze steps 1 and 2. Let Y = Zf cost(S;) * yi. Note that the yls are all
binary random variables and

Probly; = 1] = =; and Probly; = 0] =1 — z;.

Therefore E[y;] = z;. Furthermore,

k k

k
E[Y] = E[Z cost(S;) * yi] = Z cost(S;) x Ely;] = Z cost(S;) * x;

% %

The RHS represents the optimal solution of the LP-relaxation and so E[Y] < OPT. where OPT
represents the optimal solution of the ILP. The probability that j € U is NOT covered is [[;. jeSi (1—
z;). Therefore the probability P; that an element j € U is covered is given by:

Pi=1—-J[1 —-)

1:5€S;

It is easy to see that the quantity in the RHS is minimized when z; = 1/ f; where f; is the frequency
of j for all 7 : j € S;. Hence,

Pi>1- [[a-1/f)=1-0-1/f)"

1:5€S;
Recall that for all real z, e* > (1 + z) and hence
e Mi>(1=1/f) = et > (1-1/f)%.

Hence,
P> (1-1/e).

Therefore the probability that each element is covered is at least a constant. So the expected
number of elements covered is at least (1 — 1/e)™. This fact motivates step 3 as follows:
Step 3: Repeat step 2 clogn times for some positive ¢ to be fixed later.
Note that each repetition is independent of all other repetitions. Let C’ be the collection of subsets
thus obtained. The probability of j € U is not covered by a subset in C" is atmost (1/¢)¢?9". Now
pick ¢ such that:

(l/e)do-’]" >1/4n = e < 4

Therefore the probability a j € U is not covered by a subset in C' is atmost 1/4n. Let PJ-C represent
the probability that there exists at least one j € U that is not covered.

PP <1/4 (8.1)

31
By using the union bound:
n
Problz; Vza V.- Vz,] < ZProb[zi] (8.2)
i

We get
Elcost(C')] < clogn x OPT (8.3)

Notice that (8.2) is not dependent on the fact that z%s are all independent. Recall Markov’s
inequality:

ElX
Prob[X > k] < % (8.4)
By using (8.3) and (8.4) we get
Prob[cost(C’) > 4clogn « OPT]) < 1/4 (8.5)

We need two things:
e The cost(C') should be less than 4clogn*OPT
e C' should be feasible

Let the probability that the above two things happen be Pyegireq- Then from (8.1) and (8.5) it is
easy to see that:
Pdesi’red > 1/2 (86)

Now simply run steps 2 and 3 until the above conditions are met. By (8.6) we expect to repeat
steps 2 and 3 not more than 2 times.

Note: OPT in (8.5) actually refers to the optimal solution of the ILP which is incalculable. How-
ever we could use the optimal solution of the LP-relaxation for practical purposes.

MAX-SAT

Input: A boolean formula fin CNF defined on boolean variables x1, zo, ..., %, and associated
with each clause ¢ of fa weight w, .

Output: A truth assignment to z1,xs,...,z, that maximizes the weight of satisfied clauses.

We now discuss a simple randomized algorithm that give a 1/2 factor approximation (We shall
later use this to produce a 3/4 factor approximation scheme)
for each 1 =1,2,...,n do

Set z; = TRU E with probability 1/2 (independently)

Let W be the sum of the weights of satisfied edges:

E[W] = E[)_ W]
ceC

where

0 if ¢ is not satisfied
W, = .
w, otherwise

32 CHAPTER 8. RANDOMIZED ROUNDING: SET COVER

EW,.] = w.(1 —1/2F)

where k represents the number of literals in clause c¢. Since k > 1, (1 — 1/2%) > 1/2. Hence
EW.] > w./2

Therefore OPT
Wiz Y s O
ceC

since
OPT <) " w,

ceC

Chapter 9

Randomized Rounding: MAX-SAT

Last class we presented a factor-1/2 approximation algorithm for MAX-SAT. Now our goal is to
improve this to a factor-3/4 approximation algorithm. Here is our factor-1/2 algorithm:
Algorithm 1: Set each variable z; to TRUE independently, with probability 1/2.

Our next algorithm uses LP relaxation followed by randomized rounding.

Algorithm 2 (Randomized Rounding Algorithm)

Start with an IP for MAX_SAT. Let z¢ be an indicator variable indicating if clause C is TRUEFE or
FALSE. For each clause C, let Lg denote the set of positive literals in C, and L, denote the set
of negative literals in C.

max Y weze
C

subject to
ze< Y i+)y (1—)
i€LE i€Lg

z¢ € {0,1}for each clause C
z; € {0,1}or each i =1,2,...,n

Let z; = 1 denote setting of x; = TRUE and z; = 0 denote setting of x; = FALSE. In the
corresponding LP-relaxation, we replace
zc €{0,1} by 0 < z¢ <1,and z; € {0,1} by 0 < z; < 1.

Randomized Rounding Algorithm
Step 1: Solve the LP-relaxation and let (z*, 2*) denote an optimal solution.

Step 2: For each ¢ = 1,2,3,...,n, set z; = TRUFE with probability z;, and z; = FALSE with
probability (1 — z7).

Let us analyze this algorithm. Pick an arbitrary clause C and suppose it has k literals. Without
loss of generality, assume

e The literals in C involve distinct variables.

e The literals in C are all positive.

33

34 CHAPTER 9. RANDOMIZED ROUNDING: MAX-SAT

e C=(xz1VazoVa3V---lorxy).

k
Then Prob[C is FALSE] = [[(1—z]). It is a fact that for nonnegative numbers of a1, ag, . .. , ag,
i=1
the arithmetic mean is at least as large as the geometric mean. In other words,

a+---+a
% Z k/a1a2...ak‘

This implies that

(1—16;*))’“

Prob|C is FALSE] < (-

k
1=

1

Since z* is feasible for the LP-relaxation, it satisfies

Hence,

Prob[C is FALSE] < (1 — zf)’“

and this implies that

Prob[C is TRUE] < 1 — (1 — %C)k.

We need to understand the function g(z) < 1 — (1 — £)* better to take the next step.Suppose
B =1— (1 — fraclk)k.

Lemma 16 g(z) > B2k, for z €/0,1].

Proof:

35

This implies that ¢'(z) is decreasing and the function looks as shown in the figure above. So
g(z) > Bz for z € [0,1]. O This implies that Prob[C is TRUE] > Biz¢. Therefore E[W¢| >

Brziwe. We know B =1 — (1 — %)k >1- %, and therefore
1 *
E[WC] 2 (]. - E)chc’.

This implies that
1 . 1
EW]>(1--) zc:zcwc > (1 -)OPT.

Let us reexamine the analysis of the two algorithms. Let C be a clause with k literals,
Algorithm 1: Prob[C is TRUE] =1 — 2% = .

Algorithm 2: Prob[C is TRUE] > fz; = (1 - (1 - %)k)zé,

k=1 k=2 k=3

ar | Y 3/3 7/8 oy is an increasing function of k = so algorithm 1 does well for
large clauses.
B 1 3/ 19/27 | Bgis a decreasing function of k = algorithm 2 does poorly for

large clauses.

It is also easy to verify that oy + B >3/2 for all k. This suggests a third algorithm that
performs better by picking one of Algorithm 1 or Algorithm 2, randomly.

Algorithm 3: Toss a coin and run algorithm 1 or algorithm 2 depending on the outcome.
Lemma 17 E[W] > 20PT.

Proof: Let W; and Wsbe the random variables denoting weight of solution of algorithm 1 and
algorithm 2 respectively. Let C be a clause with k literals. Let W(lj and W(Qj denote the random
variable that stands for the weight contribution of clause C' for algorithm 1 and algorithm 2
respectively. We know E[Wé] = apwc and E[Wg] > Brziwe. Let We be the weight combination
of clause C in combined algorithm. Then,

W/ with probability 1/2
We =
W with probability 1/2

Hence,
E[Wc] = (W¢ +WE) /2.

By substituting the bounds for the individual algorithms we get

1 .
E[WC] > §(akwc + ﬁkwczc).

Since z¢» < 1, this implies

1 * *
E[Wc] > E(akw(;zc + ﬂkw(;z(;).

36 CHAPTER 9. RANDOMIZED ROUNDING: MAX-SAT

Finally,
1 * 3 *
E[Wc] > E(ak + 6k)wczc > chzc.
O

Therefore, E[W] =Y E[W¢] > 23 wezg > 30PT.
C C

Chapter 10

Derandomization: MAX-SAT and
Scheduling on Unrelated Parallel
Machines

Last week three algorithms for MAX-SAT were introduced. The final algorithm was a combination
of the first two and gave us a factor—% approximation algorithm. The final algorithm was:
Algorithm 3 : Toss an unbiased coin and depending on the outcome, pick algorithm 1 or algorithm
2 and run it.

For this algorithm we showed that if W is the random variable denoting the weight of the satisfied
clauses then E[W] > 3 . OPT. Alternately, a factor-2 approximation algorithm for MAX-SAT is
given as:

Run algorithm 1 and algorithm 2 respectively, and pick the better solution.

Claim: Let W' denote the random variable that is the weight of clauses satisfied by the alternate
algorithm, then E[W'] > 2 - OPT. Proof:

W' = max{W' w?} > M
obtain expectation of both sides,
B > EW'] ;E[WQ]
the right side is the expected weight of solution if we use algorithm 3, which > % -OPT O

Derandomization. For each of these algorithms, we have only given approximation guarantees in
an expected sense, which means it does not guarantee that we will not get a bad solution. However,
both Algorithms 1 and 2 can be derandomized, that is, we can construct equivalent deterministic
algorithms. We will derandomize Algorithm 1 using the technique of conditional probabilities to
have a guaranteed factor-% approximation.

In the computation tree for MAX-SAT, a level k£ node is identified by the k-tuple of the truth
values (a1, a9,as,...,ar), where 1 = a1, T2 = ag,...,Tx = ax So each leaf of the computation tree
represnets a truth assignment Define the conditional expectation of a node (a1, az,as,...,ax) as

37

38CHAPTER 10. DERANDOMIZATION: MAX-SAT AND SCHEDULING ON UNRELATED PARALLEL

Level 0

Level 1

Xz

Level 2

Level n-1

Level n

Figure 10.1: Computation tree for MAX-SAT

E[W|.’171 =a1,T2 =A2y... T = ak]
From the definition and previous algorithms, we obtain:
Remarks:

e The conditional expectation of the root is E[W].

e The conditional expectation of a leaf (a1, as,as,...,ay) is the sum of the weights of satisfied
clauses obtained by setting ; = a;,7 =1,2,...,n

e The conditional expectation of any node can be computed in polynomial time.

Lemma 18 We can compute a path from root to a leaf, such that the conditional expectation at
every node in the path > E[W].

Proof: A node (a1,a9,as,...,ar) has two children (a1, a2, as,...,ax,T), and (a1, a9, as,...,ar, F).
Since we toss a coin to decide the truth value for x, the conditional expectation at this node is

1
Elw|lzi = a1,22 = a9, ...,z = ag] = §E[w|x1 =a1,T9 = 02,...,Tf = G, Tr1 = T
1
+ §E[w|:v1 =01,Ty = a2,.--,T = Ok, Tpy1 = F]
If at node (a1,a9,as,...,a)

Elw|z, = a1,29 = a9,...,x = ag] > E[W],

then the conditional expectation of at least one child > E[W]. This implies that if we go to the
child with a higher conditional expectation until we reach a leaf, the conditional expectation at
every node in the path > E[W]. 0

39

So at the end of this path, the truth assignment represented by the leaf gives a solution which
satisfies W > E[W1] > 1 - OPT

For the Algorithm 2 also, though conditional expectation at a note might not be the average of
conditional expectations at its children, it is still true that the conditional expectation of at least
one child > E[W]. So this works for Algorithm 2 as well.

Scheduling on unrelated parrellel machines (SUPM)

INPUT: A set J of jobs and a set M of machines, for each job j € J and machine 1 € M, a
processing time p;; € Z7.

OUTPUT: An assignment of jobs to machines with minimum makespan.

Current status of this problem:
e A factor-2 approximate algorithm using LP-relaxation.

e A factor-1.5 hardness approximate algorithm (that is, if there exsits a factor-1.5 approxima-
tion algorithm, then P = NP).

Here is the IP for SUPM
min ¢
such that

t > sz’j-l‘ij for each 1 € M

Jj€J
inj = 1foreachjeJ
€M
zij € {0,1}VieM,jelJ

And the LP-relaxation for SUPM is obtained by replacing z;; € {0,1} by z;; >0, Vie M,j € J

The integrality gap between this IP and LP-relaxation is huge! Let OPT be the optimal makespan,
and OPT} be the optimal makespan of the LP-relaxation. Consider such a case where there is a
single job, so

J={1}, M={1,2,...,m}

pij = T for all i € M
and

T 1
OPT =T, OPT;= —(ie., z;1 = p” for i € M)
m

So the gap is m, and one might wonder if we can add constraints to the LP-relaxation to reduce
this gap. Let (2,7 be a feasible solution of the IP. If p;; > T then job j is not assigned to machine
i by the IP, and so z;; = 0. However X;; may be non-zero for the LP-relaxation. We could add a
constraint C' to the LP-relaxation as follows:

Constraint C: For each i € M,j € J, if p;; > T,then z;; =0

40CHAPTER 10. DERANDOMIZATION: MAX-SAT AND SCHEDULING ON UNRELATED PARALLEL

The problem here is that this is not a linear constraint. Let 7™ be solution of the LP-relaxation
with constraint C'. Then
OPT; <T* < OPT

We know that the integrality gap between OPT and OPT} is large, but the gap between OPT
and T* could be small. In fact, this is the case. So our algorithm for the problem will be:
Algorithm:

Stepl. Compute (z*,T*) using parametric pruning.

Step2. Use rounding to go from z* to an integral solution with makespan 7' < 2-T* < 2- OPT.

Chapter 11

Deterministic Rounding: Scheduling
on Unrelated Parallel Machines

Recall from last class that the integer program for Scheduling on Unrelated Parallel Machines
(SUPM) is

mint
subject to

t > Z x;j for each machine i € M
jeJ
Z$ij = 1 for each job j € J
1EM
zi; € {0,1} for all 4, j
Recall that the difference between MINIMUM MAKESPAN and SUPM is that in SUPM the

processing time of each task is machine dependant. The LP relaxation is obtained by replacing the
constraint z;; € {0,1} by z;; > 0 for all i € M,j € J. We had two observations from last class:

1. The integrality gap of the above IP, LP relaxation pair is > M.
2. In any feasible solution (z,t) of the IP, if p;; > t then z;; = 0.

However, item (2) above need not to be satisfied by a feasible solution of the LP. So we would like
to add this constraint to the LP.

(C) if pjj >t then z;;j =0 foreachi e M,j e J

We will call the problem obtained by adding (C) to the LP relaxation, LP + (C). Let T* be the
makespan of an optimization solution of LP + (C), then

OPT; < T* < OPT.

Here, OPTY is the cost of an optimal solution of the LP relaxation. So T™ is a better lower bound
on OPT. But (C) is not a linear constraint. So to obtain 7™ we use a technique called parametic
pruning.

41

42CHAPTER 11. DETERMINISTIC ROUNDING: SCHEDULING ON UNRELATED PARALLEL MACH;

For any T, define Sp = {(i,j) | i € M,j € J,p;j < T}. If (2, T) is a feasible solution of LP +
(C) then z;; = 0 for all (4,5) ¢ S7. This means that (z,T’) satisfies the following constraints:

Z Tij - Pij < Tforallie M (11.1)
J:(4,5)EST
Y wy = lforalljeJ (11.2)
i:(2,j)EST
z;; > 0forall (4,5) € St (11.3)

Conversely, if z is a feasible solution of the above set of constraints, then (z,T) is a feasible solution
to LP + (C).

Now, how do we compute 7*? Suppose we know that 7 is in some range [LB, U B]. We simply
need to find a smallest 7' € [LB,UB]| such (z,T) is a feasible solution to set of constraints. We
do this by binary search. Specifically, we start with an initial 7' being the midpoint of the range
[LB,UB]. We then check of constraints (1-3) defined with respect to T" has a feasible solution z.
Without loss of generality, we can assume that if constraints (1-3) have a feasible solution z, then
x is an extreme point of the set of feasible solutions. If constraints (1-3) do have a feasible solution
z, we try a smaller value of T', else we try a larger value of T'.

In this manner we compute a pair (z*,7*) an optimal solution to LP + (C) and we assume.
Note that z* satisfies the property that w;-“j =0foralli € M,j € J:p;; >T* It is possible that
for some pairs (3,), z;‘j may be fractional and we show how to round these.

Let r = |Sy|. This means that z* is a vertex of an r-dimensional polytope. Hence z* is the
intersection of some r hyperplanes, from among those defined by

Z zi; Py = T forallie M (11.4)
Jx(6,5)€ST
Y iy =i lforalljeJ (11.5)
1:(4,7) ESTx
ziy; = 0forall (4,7) € Sp~ (11.6)

At most (n + m) of these came from the first two sets of hyperplanes. Hence r — (n + m) of them
have to be from the set (6). These r — (n +m) constraints make r — (n + m) of the r z;; variables
0. These means that at most (n 4+ m) of the z;; variables can be non-zero.

Let a job j € J be integral if 27; = 1 for some ¢ € M. Let a job j € J be fractional if z7; € (0,1)
for some ¢ € M. How many fractional jobs can there be? Let a be the number of integral jobs and
b be the number of fractional jobs. So we have that a + b = n. We also know that in addition to
the a z;; variables that are set to 1 because of the a integral jobs, there are at least 2b x;; variables
that are set to positive fractional values. Hence, we also have a + 2b < (n 4+ m). Solving for a and
b, we get that b < m. In other words, there are at most m fractional jobs. If we could take each
fractional job j and assign of it to a distinct machine ¢ with z7; > 0, we are done. This is because
for any z7; € (0,1), we have p;; < T*. Therefore, if we could find a matching of jobs to machines,
our makespan increases at most by T*. Before these fractional jobs are assigned, the makespan is
T*. After the fractional jobs are assigned, the makespan < 27 < 20PT.

Chapter 12

Capacitated Vertex Cover

We will quickly wrap up our discussion of the problem Scheduling on Unrelated Parallel Machines
(SUPM) that started last lecture. We now have a solution (T, X*) to LP + (C). We showed that
at most m jobs are assigned fractionally in z*. There is a simple way in which these fractional jobs
can be rounded.

Consider the bipartite graph G = (A, B, FE) such that A is the set of machines which are
assigned some fractional jobs, B is the set of jobs assigned fractionally, and E contains edges {i,j},
where i € A, j € B and z;; € (0,1). This is a bipartite graph and it can be shown that this
contains a matching in which all jobs are matched. This is left as an exercise for you.

As mentioned in the last lecture, in order to “round” z* given the above property, we simply
assign each job to the machine it is matched with. This increases the makespan from 7™ to at most
2.T*<2-0OPT.

Family of Tight Examples. Let n = m? —m + 1 where n is the number of jobs and m denote
the number of machines. Suppose job-1, j1, has a processing time m on all machines and any other
job, 7i, can be processed in unit time on any machine.

The OPT for this problem instance is m. Say, j; is assigned to mi and completes in time m.
The remaining m? — m jobs are assigned so that each of the remaining m — 1 machines get m jobs.
In fact, the above solution is a feasible solution for the LP. Let us consider the following feasible
solution.

e Split j; into unit sized jobs and assign one unit to each machine.
e Of the remaining jobs, assign (m — 1) of these to each machine.

This solution is a vertex of the feasibility polytope and forms a feasible solution with makespan
m. If this solution is returned by the LP relaxation, then rounding will assign j; to one of the
machines and increase the makespan to 2m — 1.

CAPACITATED VERTEX COVER (CapVC)
INPUT: Let G = (V, E) is a graph with vertex weights w, € Q' and vertex capacities k, € Z 7.
OUTPUT: A vertex cover defined by a function, z : V' — Ny such that

(i) There is an orientation of the edges such that the number of edges coming into any vertex is
atmost k, - z(v).

43

44 CHAPTER 12. CAPACITATED VERTEX COVER
(i) >, ey wy - z(v) is minimized.

Status of the Problem: A factor-2 approximation can be obtained by using dependent rounding and
an alternate factor-2 approximation algorithm can be obtained using the primal-dual framework.
We will discuss a simple factor-4 algorithm that uses a deterministic rounding technique and a
factor-3 approximation algorithm using dependent rounding method. Given below is the integer
program corresponding to CapVC. The variables used are: z, € Ny for each v € V and y., € {0,1}
for each edge e € E and v € e. y,, indicates if vertex v covers e.

minimize E Wy * Ty

vEV
such that
Yew +Yeu > 1 for each edge e={u,v} €F
Z Yew < ky-z, foreach veV
e:wvee
Ty € NO
Yew € {0,1}

The corresponding LP relaxation replaces the constraints y., € {0,1} by y., > 0 and z, € Ny by
Zy > 0. Any feasible solution to the above IP satisfies the following property:

If yo, = 1 for some edge e : v € e, then z, > 1.

This property can be enforced in the LP relaxation problem by adding the following linear constraint

Ty > Yepy foreach e:ve€e

Deterministic Rounding Algorithm. Here is a deterministic rounding algorithm that yields
a factor-4 approximation.

1. Solve the LP-relaxation to obtain the solution (X,Y).

2. For each y,, > L

> 3, Yep = 1. For all other y,,, set yz, =0.

3. Set .
Ze:vEe Yew
ky

2=] (12.1)

Claim: This algorithm produces a factor—4 approximation algorithm.

Proof: We know that y7 , < 2y., Ve € E, v €e.
And we want to show that: z} <4z, YveV.
Since,
yz,v <2. Yew

we get,
= Zyé,v < 2 Zye,v < 2-ky-zy
e:weEe eweEe
Let,
yy =aky +b Va,bel,a>0, 0<b< k.
So,

ak, +b a b
Ty 2 =
2k, 2 2k,
Now using (1) and (3),

Ty = ['| < a+1
Therefore, if we can show that

b 2b
<)< =
(a+1) 4(+2k) 2a+kv

we will be done.

Now, RHS = 2a+ 2 If a > 1 then RHS > LHS. If a = 0, then y} < k,.

45

(12.2)

(12.3)

(12.4)

(12.5)

This implies that

zy € {0,1}. If 2} = O then we are done. If 3 =1, then yj =1 Hence Yo, = 1 for some edge
e: v € e. This implies ye, > 5 L for some e : v € e. Therefore, z, 2 by the constraint added to

the LP relaxation. Hence, z} < 4x,,. O

46

CHAPTER 12. CAPACITATED VERTEX COVER

Chapter 13

Dependent Rounding for Capacitated
Vertex Cover

Capacitated Vertex Cover

A factor-3 approximation algorithm for capacitated vertex cover
To prove this we use a very nice technique called Dependent Rounding

Dependent Rounding :
Given a bipartite graph G = (A, B, E) such that each edge {i,j} € E has an associated real
number z;; € [0, 1]

Goal:
To devise an efficient procedure that rounds each z;; probabilistically to X;; € {0,1} such that the
following properties are satisfied

(Pl) PI‘Ob[XZ'j = 1] = Tyj

(P2) Let

d; = Z Tij5

j{ijeE

this is called the fractional degree of i
Let

Di= > Xy

j{ijeE

this is called the integral degree of i
Key Property:

Prob[D; € {|di], [di]}] =1
If d; is integral then D; = d; with certainty

47

48 CHAPTER 13. DEPENDENT ROUNDING FOR CAPACITATED VERTEX COVER

(P3)Negative correlation property

Cosider the following:
Assign X;; = 1 with probabiliy z;; and X;; = 0 with probabiliy 1 — z;; independently
Clearly (P1) is satisfied , however (P2) is not

Why is dependence useful:
Cosider randomized rounding for set cover, we are not guaranteed to get a feasible solution, that is
the motivation for the property (P2) in which we do dependent rounding to get a feasible solution
(P2) works only for bipartite graphs.

The Dependent Rounding scheme:

Let z;; € [0,1] be a variable associated with edge {i,j} € E
Initially y;; = z;; for each (4, j) € E. We probabilistically modify y;; in atmost |E| steps such that
yij € {0,1} at the end.
Then we set X;; = y;; for all (i,j) € E
Our iterations will satisfy the following two invariants:

(I1) For all (i, 5) € E,y;; € [0,1].

(I2) Call (z,7) € E rounded if y;; € {0,1}, and floating if y;; € (0,1).Once an edge gets rounded,
y;; never changes.

An iteration proceeds as follows. Let F' C F be the current set of floating edges. If F' = ¢, we
are done.Otherwise, find(in linear time) a simple cycle or maximal path P in subgraph (A, B, F),
and partition the edge set of P into two matchings M; and Msy.Note that such partitions exists
since (A,B,E) is a bipartite graph.

If P is a cycle then it is an even cycle

Define
o = maximum mass we can transfer from M; to Ms.

a = min{z;|{i,j} € M1} U{l —z;|{i,j} € Mo}

[= maximum mass we can transfer from M, to M.

B = mzn{m”\{z,]} € MQ} U {1 — :L‘Z]‘{Z,j} S Ml}

We can transfer o from M; to My with probability ﬁ or
B from My to M with probability a’%ﬁ

Capacitated vertex cover:

49

min E Wy Ty

veEV

such that :

Yew +ye,u > 1 Ve= (’U,,‘U) €EF

Z Yeo < kyty YW EV

e:wee

Ty > Yew VU,Ve:v Ee
Ty, >0VveV
Yew >0 Ve€E E,v€e

Threshold and Round:
Stepl: Solve the LP-Relaxation , Let solution be (X,Y)
Step2(Threshold): For each edge e = {u,v} € E, if y, > % set y; ,, to 1 else if ye, > % set Y, to
1.
Step3(Rpunding Step):
Let E' be the set of edges e for which y,, < % and ye, < %
Create a bipartite graph H = (E', V, E") where V = vertices of the original given graph.
E' connects each edge E in E’ to its end points in V.Constraint (P2) is satisfied

Run dependent rounding on H to get y; , valus for the remaining edges e € {u, v}
We finally set

*
D ewee Ye,w

By |

zy =

YoveV
Claim:

E[X}] <3z, VeV

50 CHAPTER 13. DEPENDENT ROUNDING FOR CAPACITATED VERTEX COVER

E’[Z wyy) < 3 Z WyTy < 3OPT
veV veV

Proof:

Let

where d; is the number of edges assigned to V in the threshold step and 7} is the number of
edges assigned to V in dependent rounding step

Ty 1s the integral degree of V
ry € {lro], [ro1}

where r, is the fractional degre of v.

S0,
Ty = E Ye,w
e:v€e,ecE’
Suppose
Ty = Gy + fo

where a, is the integral part and f, is the fractional part

Ty € {ay,ay + 1}

We can say that,

Prob[r, =a,] =1— f,

Prob[r; =ay+ 1] = f,
because that is how we performed the dependent rounding

dy + ay

Blai) = (1- £ 22+ (1) (Ltatl

R

Proof:
Two cases:
CASE1:

dy + ay < ky

dy+ay+1<k,

implies that E[X*] < 1

We only have to show that x, > %

If dy > 1, then y,, > % for some edge e incident on V.
SO, Ye,n > % and x, > %
If d, = 0 and there is some edge in e € E' incident on V then

1
Ty > =

> 5
Yew 3 3

51

If d, = 0 and there is some edge e € E’ incident on V then all the edges were already assigned

to other end points which implies that z, =0

CASE2: d’ + ay > k,

& + ay + ky

E[X;]S(l_fv)()+fv(

dy +ay+1+k,

ky Ky

_ditaytke | fo . di+k

- kru kv - av ku - kv

52 CHAPTER 13. DEPENDENT ROUNDING FOR CAPACITATED VERTEX COVER

Claim:

It can be written as

Proof
We know that the sum a, + f, is the number of edges we have added to the vertex V in the
dependent rounding phase d; is the number of edges we have added during the threshold phase,
where we have set the threshold as % We can say that we have atlest a value greater than equal to
% for the z,’s for the vertices
Hence, we have that

%(d;j +a, + fo)

3] "

] < 3z, < 30PT

Chapter 14

Elementary Theory of LP duality

14.1 Primal-Dual Framework

Primal-Dual framework has its origins in the design of exact algorithms. This framework has
become a highly successful algorithm design technique over the last few years. Over the last few
years many classical problems such as the Facility Location Problem have been approximated using
the primal-dual schema and the original factor approximations have improved by leaps and bounds.
In this lecture, I shall describe the primal-dual framework and describe some key properties of this
schema. Then, I shall provide a few well known problems that we have already discussed and then
we shall write out the dual of the primal programs.

14.1.1 A Quick Review

An LP in standard form is written as follows:
n
min Z ej A j
i=1

such that,
n
Zaij'xj >b;, fori=1,...,m
j=1

and,
zj >0, forj=1,...,n

The above standard form can be written more compactly as follows:

min ¢ -z
such that,
Az >0b
and,
z>0

where we are given ¢ € R” b € R™, A € R™*™ and we are solving the LP for z € R".

93

o4 CHAPTER 14. ELEMENTARY THEORY OF LP DUALITY

The dual of this LP is written in terms of dual variables y instead of primal variables z as
follows:

m
max Z bi- Y
i=1
such that,

m
Zaij-yi <cj, forj=1,...,n
i=1
and,
y; >0, fori=1,...,m

In compact form, the above dual LP can be written as:

max bl .y
such that,
ATy <e¢
and,
y20

Let us now write a familiar primal and the try to write its dual.

14.2 Cardinality Vertex Cover Problem as a Primal LP

Consider the cvc problem. The LP relaxation of the problem can be written as:

n
min E ;
i=1

such that,
zi+z; > 1, for each {i,j} € E
and,

z; >0, fore=1,...,n

Now, let us try to write its dual:

max Zye

ecE

such that,
E Ye, for each 1 € V
e:e incident on 4

and,
Ye > 0

14.3. PROPERTIES OF DUALITY 55

14.2.1 An Interpretation of the above LP Dual

Consider the dual as a relaxation of an IP. To get the IP back, we replace y. > 0 with y. € {0,1}.
This IP is the Mazimum Matching Problem.

The above LP dual has a combinatorial interpretation. However, note that not all LP duals
have a combinatorial interpretation.

14.3 Properties of Duality

This section lays the foundation of the primal dual framework. In this section, we study two key
properties of duality that we state as follows:

e Weak Duality Theorem

e Strong Duality Theorem

14.3.1 Weak Duality Theorem

Theorem 19 If x is a feasible solution of the primal and y is a feasible solution of the dual then,
loy<cl oz,

In simpler terms, the above theorem is saying that:
“Dual is a lower bound on primal and primal is an upper bound on the dual.”

The figure in Figure 14.1 shows a pictorial view of the above.

Proof: m
b’ Yy = Zi:l b+ yi
< (Z?:l az’j'ﬂfj) “Yi
= > (X aijryi) 3
n
< Zj:l CjrTj
= CT- ‘T
O

Corollary 20 The primal has a finite optimal solution iff the dual has a finite optimal solution.

Next, we present Complementary Slackness Conditions with respect to the primal and dual
LP’s.

Complementary Slackness Conditions
The “complementary slackness conditions” state the following:

Let z and y be feasible solutions of the primal and dual LP’s respectively. Then z and
y are both optimal iff all the following conditions are satisfied:

e Primal Complementary Slackness Condition. Where, for each j = 1,...,n,
either z; =0 or 1", aij- yi = ¢;.

e Dual Complementary Slackness Condition. Where, for each 1 = 1,...,m
either y; = 0 or Z;'Lzl Qi Tj = b;.

56 CHAPTER 14. ELEMENTARY THEORY OF LP DUALITY

Cost of feasible
primal solution

Cost of feasible
dual solution

=
==

;==
===

ATy ST >
OBT for dual OPT for primal

Figure 14.1: A Pictorial view of the Weak Duality Theorem.

14.3.2 Strong Duality Theorem

Theorem 21 If z*,y* are primal and dual optimal solutions respectively then

Revisiting cvc and Maximum Matching Problem in the context of the Strong Duality
Theorem

Recall that the “weak duality theorem” stated that the opT for Maximum Matching Problem
(MMP) is a lower bound on the OPT for cvc. The “strong duality theorem” is stating that the OPT
obtained from the relaxed version of both the problems are the same. To get a pictorial view, refer
to Figure 14.2.

The case of bi—partite graphs yields the picutre in Figure 14.3.

The following theorem is due to Konig and Egervary.

Theorem 22 The size of the a mazimum matching in bi—partite graphs equals the size of a mini-
mum CVC.

14.4 The Maximum Flow—Minimum Cut Theorem

Max—Flow Problem:

14.4. THE MAXIMUM FLOW-MINIMUM CUT THEOREM

OPT_f for relaxed
cvC and MMP

Cost of feasible
Vv C solution

Cost of feasible
MM P solution

S \ ATy

MMP

Figure 14.2: A Pictorial view of the Strong Duality Theorem as it applies to OPT and MMP.

Input: A digraph G = (V, F) and edge capacities ¢ : E — R" and a source s and a sink ¢.
Output: A flow f : E — R" such that:

1. Capacity Constraint: for each (i,5) € E, f(i,7) < c(i,).
2. Flow Conservation: for each i € V'\ {s,t}
Yo fGi =) fG4)
3:(G0)EE J:(6,5)€E

3. Maximality: The following is maximized:

Z f(saj)_ . Z f(.773)

j:(s,5)EE J:(j,8)EE
14.4.1 An LP for Max—Flow Problem
max Z f(sa]) - Z f(]as)
FHEN IS J:(4,8)EE

such that,
f(i,5) <e(i,4),V(,5) € E

58 CHAPTER 14. ELEMENTARY THEORY OF LP DUALITY

Feasible solutions for Feasible solutions for
MM P cvc

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\////////%

===

OPT_f of CVC =
OPT_f of MMP =
OPT of CVvC =
OPT of MMP

Figure 14.3: A pictorial view of the Koénig-Egervary Theorem

and,

Yo G = Y f6,45),VieV\{st}

J:(J)EE J:(65)EE
and,
f(i,7) > 0,V(i,j) € E

A Simplification to the above LP

1. Add a directed edge (t,s) with ¢(t,s) = oo and enforce flow conservation at s and ¢. This
will enable us to write out objective function as max f(¢, s).

2. Replace the equality for conservation constraints by “<’s” everywhere where there are “="s".

14.4.2 The Simplified LP

max f(t,s)

such that,
f(i,5) <e(i,5),V(,5) € E

14.4. THE MAXIMUM FLOW-MINIMUM CUT THEOREM 59

and,
o fGi - Y fGE)<0VieV
J:(G4)€E §:(i4)€E
and,
f(i,3) > 0,V(i,j) € E

14.4.3 The Dual of the above LP

e For each primal edge constraint, let p;; be the corresponding dual variable.

e For each primal vertex constraint, let d; be the corresponding dual variable.

The objective function is written as (as per the rules of the primal-dual framework):
min Y pij-c(i, j)
(i,j)€E

Now, look at the matrix representing the primal program:

1 0 0 0 ... 0
0o 1 0 0 ... 0
0O 0 1 0 ... 0
0 0 0 O 1

+1’s, —1’s and 0’s

In the above matrix (that corresponds to the primal LP), the submatrix above the horizontal
line is an identity matrix that corresponds to the capacity constraints. The submatrix below the
horizontal line contains elements in {0,41}. This submatrix corresponds to flow conservation
constraints on all vertices. Since the matrix corresponds to the primal program, observe that a
column corresponds to a primal variable representing an edge. The part of this column above the
horizontal line will contain exactly one 1 and below the line, we will have exactly one +1 and
exactly one —1 while the rest of the entries will be all zeros (0’s).

We shall continue our discussion next time.

60

CHAPTER 14. ELEMENTARY THEORY OF LP DUALITY

Chapter 15

The Primal-Dual Schema for
approximation algorithms

We now have

maxf(t,s)
subject to
f@i,5) <eli,j)V(i,j) € B. -1
Y G- Y fGi)<oviev.-II
J:(J)EE ji(i,j)EE
DUAL LP:

Let d;p be the dual variable corresponding to the Type I constraint for edge (i,j).
Let P; be the dual variable for the Type II constraint for vertex i.
We want to minimize

> cliyg) - di

(i.7)eE

To obtain the dual constraints let us examine the primal constraint matrix.
Hence the dual constraint corresponding to primal variable f(i,j) are

dij — Pi+P; > 0V(i,j) € E
And dual constraint corresponding to f(t,s) are

P,—P>1

P>0WieV

61

62 CHAPTER 15. THE PRIMAL-DUAL SCHEMA FOR APPROXIMATION ALGORITHMS

Hence Dual LP

min»_ (i,5) € E - c(i, j).di;
subject to

dij — P; + P; > 0V(i,j) € E
P, -P >1
dij > 0¥(i,j) € E

P>0GeV

Consider the IP obtained by replacing d;; > 0 by d;; € {0,1} and P, > 0 by P; € {0,1}
Observe that the above LP is a relaxation of this IP.
* How is this IP interpretted 7
In any feasible solution P; = 0 and P, = 0.
Let Vo ={i€eV|P =0}
Vi={ieV|P =1}
In an optimal solution d;; =0V (i,j) e Eand { (i€ Vyandj e V) or (i€ Vi and j € V1)}

di]' = OV(Z,j) eFE:i1€Vyandj €V

dij =1V(i,5) € B :i € Viandj € Vy

Hence the objective function is minimizing the total capacity of edges from V; to V;
Primal Dual Schema For Approximation Algorithms
Consider the following approximate complementary slackness coditions:
Approximate Primal Complementary Slackness
Foreachj=12,....,nz; =0
OR
G < in:a---y- < Cjwherea >0
o = et i T > Ly =

Approximate Dual Complementary Slackness
Foreachi=12,.... my; =0
OR

n
B-b; > Zaij -xj > byjwheref >0
j=1

63

Claim: Let x and y be feasible primal and dual solutions satisfying all of the above constraints.
Then

n m
ch'wj Sﬁ'azbi'yi
Proof:

n n m
Docimi <Y (@) ai-yi)-xj
=1 =1 =1

m n

=a-) Y (ai-j) -y

i=1 j=1

m
<o f Y biow
1=1

Using this in Set Cover
Set Cover LP Relaxation

n
min Z c(sj) - 55
i=1

Subject to
Z zj > 1foreachelementi = 1,2, , M
JuES;
zj > 0foreachj = 1,2, N

Dual LP

m

mazx Z Yi

=1

Subject to

Z yi < c(Sj)foreachj =1,2,.....,n
1€S;

y; > 0foralli = 1,2,......,m

Let us state the Approximate Complementary Slackness Conditions with o = 1 and 8 = f, where
f = max. frequency of any element i.
Approximate Primal Complementary Slackness

64 CHAPTER 15. THE PRIMAL-DUAL SCHEMA FOR APPROXIMATION ALGORITHMS

For each set S; , z; = 0 or

> ui=C(S;)

1€S;

Approximate Dual Complementary Slackness
For each element i = 1,2,.....m , y; = 0 or

n
> 721
JiES;

If we can come up with an integral feasible solution x and a dual solution y satisfying the slackness
conditions mentioned, then we get a factor-f approximation algorithm for Set Cover.

How do we find such x and y ? First let us restate the primal complementary slackness
conditions: It is saying that for each set S; , j=1,2,....,n, we cannot have z; ; 0 and

> i < e(Sy)

1€S;

= For each set S; , j=1,2,.....n, if z; ; 0 then

> i = c(S;)

i€S;
1. Start with x = 0 (integral non-feasible Primal solution) and y = 0 (feasible dual solution)
2. At each step we make x more feasible maintaining integrality.

3. At each step make y more optimal.

4. At all steps approximate complementary slackness conditions are maintained.

Chapter 16

Approximation of Set Cover via the
primal-dual schema

A factor-f algorithm for SET COVER via the primal-dual framework
The primal of this problem, which is the LP-relaxation for SET COVER is the following;:

Minimize

>z e(S))
j=1

subject to

ij > 1lforeach:=1,2,---,m
jii€S;
z; > Oforeachj=1,2,---,n

The dual of this problem is:
Maximize

subject to

Zyz‘ < ¢(S;) foreach j =1,2,--,n
iESj
y; > O0foreachi=1,2,---,m

The primal complementary slackness condition is:
For each j =1,2,---,n:z; =0or Ziesj yi = ¢(S;)
The dual complementary slackness condition is:
For eachi=1,2,---,m:y; =0 or Zj:iesj zj=1
The corresponding approzimate primal complementary slackness condition is:

@ <Yy <el(S))

1€S;

65

66 CHAPTER 16. APPROXIMATION OF SET COVER VIA THE PRIMAL-DUAL SCHEMA

The corresponding approzimate dual complementary slackness condition is:

B> z>1
JHEeS;
(Note that @« =1 and 8 = f gets us the original "exact” constraints.)
We would like these two approximate constraints to be maintained. If we can produce z and y
such that z is a feasible, integral, primal solution and y is a feasible dual solution satisfying these
approximate constraints, then z is a factor-f approximation solution for SET COVER.

Remarks on the approximate constraints
Approzimate Dual Constraint:
How hard is it to maintain the dual constraint? Easy. (It comes for free and is always satisfied.)
If z is a feasible integral solution, then the approximate dual complementary slackness condition
is satisfied.
Approzimate Primal Constraint:
Another way to write this condition is as follows:

For each j=1,2,---,n:2; #0=> Ziesj y; = c(S;)
This suggests a way of setting z;’s to 1’s: when a set S; becomes ”tight” (ie. EZ-GS], yi = ¢(Sj))
then set the corresponding z; = 1

Algorithm

1. Set z = 0 (integral, infeasible primal solution) and y = 0 (feasible dual solution).
Note that approximate primal complementary slackness condition is satisfied. The approxi-
mate dual complementary slackness condition is NOT satisfied after the initial step, after we
start increasing y;’s. We do not worry about this because as soon as x becomes feasible, the
dual constraint will be re-satisfied.

2. Pick an uncovered element . Increase y; to the minimum value such that some set containing
i is tight.
3. For all sets S; that are tight, set ; = 1 (ie. throw set S; into solution).

4. Remove all elements i covered by sets in solution. (This simply means their current y;’s
cannot be increased any further.) Go back to step 2.

In step 2, suppose we increased ¥;’s "synchronously”. The first tight set is a set S; with minimum
cost(S;)
1551

. This is equivalent to our greedy choice in the greedy algorithm approach.

Steiner Tree

Input: A graph G = (V, E) with edge costs C : E — Q" and a set R C V of required vertices.
Output: A tree in G with minimum cost containing R. (If R is a tree, this becomes the minimum
spanning tree problem which we know how to solve in P. The generalization is in NP. The hard
part comes from choosing which vertices not in R should participate in the solution.)

Status: Easy factor-2 approximation algorithm via minimum spanning tree. The approximation

67

factor has been improved many times in the last decade (eg. 5/3-factor, all subsequent lower factors
are due to Zelikovsky).

There is a specific version of this problem called Fuclidean Steiner Tree

Input: Points in R"

Output: A tree with smallest cost connecting these points, but may include other points as well.
Status: There is a PTAS for this (due to S. Arora).

Solving the Steiner Tree problem

1. Reduce the problem to the Metric Steiner tree problem.
Specifically, construct the following:

G = (V,E) - GM = (V,EM)
where GM is the complete graph and ¢(u,v) = cost of cheapest path between u and v in G.

2. Solve the Steiner Tree problem on G™ and R. This is called the Metric Steiner Tree problem.
(The edge costs of GM satisfy triangle inequality.)

Lemma 23 Cost of optimal Steiner tree of R in G = cost of optimal Steiner tree of R in
GM,

Proof: This is clear from the fact that for any edge (u,v), its cost in GM is no more than
its cost in G. So we might as well solve the problem on GM. O

3. Compute a minimum spanning tree T of GM.
Lemma 24 Cost of T, cost(T) <2-OPT

Proof: Consider an inorder traversal or tour of the edges in the optimal Steiner tree. When
backtracking, we skip the vertices that we have already traversed by adding an edge to an
unvisited vertex in our graph. So it is clear that we can, at most, end up doubling our edges.
These shortcut edges do not increase the cost of the tour because of triangle inequality.
Hence, the cost of our tour < 2- OPT. Remove one edge in this cycle and we get a path
< 2-0PT. So if we used the minimum spanning tree, it would have to be less than this.
O

Steiner Forest

The algorithm we describe is by Goemans and Williamson (factor-2 approximation, best known).
Input: A graph G = (V, E) with edge costs C : E — QT . A collection of subsets of V', S1, So, -, S
Output: A subgraph of G with minimum cost such that for any S;, vertices in S; lie in the same
connected component of the subgraph.

68 CHAPTER 16. APPROXIMATION OF SET COVER VIA THE PRIMAL-DUAL SCHEMA

Chapter 17

Steiner Forest via the primal-dual
schema

Steiner Forest
We will obtain a 2-approximation algorithm for the steiner forest problem using the primal-dual
schema, with the idea of growing duals in a synchronized manner.

Definition Given an undirected graph G = (V, E), a cost function c on the edges, and a collection
of disjoint subsets of V', find a minimum cost subgraph in which each pair of vertices belonging to
the same subset are connected.

Input

An undirected graph G = (V, E),

a cost function on the edges, c: F — Q*, and

a collection of subsets of V', {S1,S2, -, Sk}

Output

A minimum cost subgraph F' of G such that Yu,v € S;,3 a u — v path in F.

Notation

1. Define the connectivity requirement of G be a function r, the set of all unordered pair of
vertices to {0, 1}, such that

r(u,0) = 1 if u,v € S; for some ¢
"7 1 0 otherwise

2. Recall that a cut in G is a partition (S, S) of V. We will use S to denote such a cut. Define
a fuction f such that,
f:2V —={0,1}

as follows : B
1 if Ju € S,v € S such that r(u,v) =1
0 otherwise

1) ={

69

70 CHAPTER 17. STEINER FOREST VIA THE PRIMAL-DUAL SCHEMA

u
20 v

16 9 19

S t

Example 1. Let G be the above graph, with vertices{u, v, a, b, s, t}, and edge weights as displayed on the edges.
Let S1={u, v} and S2 = {s, t} bethe two subsets of V. Then afeasible soultion is the subgraph defined by the bold edges.

Figure 17.1: A graph and a feasible subgraph

Observation For any feasible solution F, f(S) < number of edges of F' that cross the cut (S, S).
Notice that the converse also holds. i.e., For any subgraph F of G, if for every cut S C V, f(S) <
number of edges of F crossing (S, S), then F is a feasible solution to the problem.

Since the converse also holds, we have an alternate charecterization. We can write the opti-

mization problem as :
A min-cost subgraph F of G such that VS C V, f(S) < number of edges of F crossing (9, S).

IP formulation and LP relaxation Let z. be an indicator variable for each edge e € E. The
objective function is :

min Z zec(e)
ecE
subject to,
Yo = £(8) VS CV
e:e€d(S)
ze € {0,1}; Ve€e E

where, §(S) denotes the set of edges crossing the cut (S, S).
The LP relaxation is obtained by relaxing z. € {0, 1}byz. > 0.

Dual of the LP relaxation Let Ys denote the dual variable corresponding to cut S. The dual
of the primal LP defined above is :
maz Z Ysf(S)

SCv

71

subject to,
Z Ys < c(e) Vee E
S:e€d(S)
Ys >0 VSCV

Complementary Slackness Conditions The primal and dual complementary slackness con-
ditions are defined as follows :
Primal:

Vedge e € B, ze # 0= Y g c55) Ys = cle).

We wil use the exact version of the primal complementary slackness condition. i.e., we set
a=1
Dual :

Veuts SCV, Yg #0= 3, c55) Te = [(5).

The approximate version of the dual complementary slackness condition is :

Veuts SCV Ys#0= f(S) < Ze:eEJ(S) ze < 2f(S).

ie, =2
If we can get an integral primal feasible solution, and a dual feasible solution satisfying these
constraints, that would imply a factor-2 algorithm for the steiner forest problem. However, we
don’t know how to satisfy the dual complementary slackness condition.

Algorithm rough sketch

1. Start withz, =0,Ve € Fand Ys=0,VSCV
(ze = 0 represents an infeasible, integral primal solution; and Ys = 0 represents a feasible
dual solution).

2. Increase the Yg’s until some edge e becomes tight.
Le., Y g.ecs(s) Ys = c(e). Throw e into the solution (z, = 1).
Features of the algorithm
1. Ys values are increased in a synchronous fashion.
2. In each iteration, we will increase Yg for a small number of cuts S.

e Define a cut S to be unsatisfied if f(S) = 1, but no edge in the currently chosen set
crosses S.

e Define an active cut as a minimal unsatisfied cut (with respect to inclusion).

In each iteration, we increase Yg synchronously V active cut S.

Claim : A cut S is active iff it is a connected component in the current subgraph and f(S) = 1.
This claim will be proved later on.

72 CHAPTER 17. STEINER FOREST VIA THE PRIMAL-DUAL SCHEMA

Algorithm
1. Set F' = ¢ (the set of chosen edges; corresponds to saying z. = 0 Ve € E)

2. while(3 an unsatisfied cut) do
Increase Yg value synchronously for every active cut S, until some edge e becomes tight.
F' «+ F' U {e}.

3. endwhile

4. Prune the redundant edges from F’. i.e., delete every edge e from F' such that F' — {e} is
feasible.

Claim : F' is a primal feasible solution, and ¥ is a dual feasible solution.

Proof: Before the pruning step, F' satisfies all connectivity requirements (because there are
no unsatisfied cuts). F' is a forest because of the property of active cuts. edges that become tight,
and are added in any iteration connect one connected component to another.

Therefore, for any u,v such that the connectivity requirement is 1, ther is a unique uv path.
Hence, all edges in the path are non-redundant and hence not deleted. Hence, after the pruning
step also, connectivity is maintained. O

73

6 6
u
20 v
6 6
16 9 19
a b
12 12

s t

5 6

In the begining of the iteration, the active setsare { s}, {t}, {u}, {v}. When their dual variables are raised

by 6 each, the edges{u,a} and {b,v} go tight. One of them, say {u,a} is picked, and in the next iteration,
{u,a} replacesthe active set { u}.In the next iteration, without having to raise any of the varaibles, the edge
{b,v} becomestight, and {b,v} replacesthe activeset{v}. The edgesthat are picked are marked in bold.

Figure 17.2: First instance when the Yg values become tight

Example execution of the algorithm Consider the graph and the subsets of the vertices as
in example 1. The following figures show the execution of the algorithm on the above graph.

74 CHAPTER 17. STEINER FOREST VIA THE PRIMAL-DUAL SCHEMA

2 2
6 6
u
20 v
6
16 9 19
a b
12 12
s t
6 6

When the Y_S values are increased by 2, the edge {u,a} becomes tight, and the active setsare now : {u,s,a}, {v,b}, {t}.

Figure 17.3: Instance when the Yg values become tight

3
6
20 v
6
9 19
b
12
t
9

At the next iteration, the edge { b,t} becomestight. The active setsare{u,s,a}, {v,b,t}

Figure 17.4: Instance when the Yg values become tight

At the next iteration, the edge { u,v} becomestight

Figure 17.5: Instance when the Yg values become tight

75

76

CHAPTER 17. STEINER FOREST VIA THE PRIMAL-DUAL SCHEMA

The subgraph produced by the algorithm consits of the edges{u,a}, {v,b}, {u,a}, {bt}, {u,v}

Figure 17.6: Final output of the algorithm

Chapter 18

Steiner Forest Algorithm (continued)

Analysis of the primal-dual Steiner forest algorithm (cont.).

Claim 2 A cut S is active iff S is a connected component w.r.t the current set of chosen edges
and f(S) =1.
Proof:

(<) If S is a connected component and f(S) = 1, then S is unsatisfied. Furthermore, S is
minimal, because any proper subset S’ C S has an edge going out of S’.

(=) Suppose S is active but S is not a connected componet, clearly, no currently chosen edge
crosses (S, S). Hence S is the union of two or more connected componets. Since S is active,f(S) =
1. Hence for some u € S and v € S, r(u,v) = 1. Suppose u € C for some connected component C
in S, then C is unsatisfied, implying S is not a minimal unsatisfied cut, a controdiction. O

Claim3 Y C.<2- Y Ys-f(S)

ecF’! Sev
Proof:
DC=> (D Y)=D (Y Ys)=D Ys:[6(S)NF| = Ys-degr(S)
ecF’ ecF’ S:ecd(S) SCV e:e€d(s)NF’ SCV SCV

where degr (S) = |6(S) N F'|, denoting the number of edges in F' that cross (S, S), which has
no relation to Yg.
We need to show that

> Ys-degp(S) <2-) Ys- f(S)

SCv Sev

We will show something stronger, that is,
Changes in L.H.S < Changes in R.H.S.
Initially, L.H.S = R.H.S. = 0. Consider any arbitrary iteration and let A be the increate in
Ys, during that iteration,
Changes in L.H.S = Z degp(S) = A - Z (S)
active S active S

7

78 CHAPTER 18. STEINER FOREST ALGORITHM (CONTINUED)

Changes in R.H.S. =2 - Z A-f(S)=2-A-(number of active cuts S)

active S

We want to show that

Z degp: (S) < 2- A - (number of active cuts S)

activeS

that is, the average degree of active cuts w.r.t. F":

>_degp(S)

numberofactiveS —

To finish the proof, we need one additional claim.

Claim 4 Let C be a component w.r.t. the currently chosen set of edges such that f(C) = 0, then
degp: (C) # 1.
Proof: Suppose the claim is false, that is f(C) = 0 but degp(C) = 1. So there exists a unique
e € F' that crosses (C,C).

Since e € F' = e is not redundant w.r.t. F".

= e is an edge on a unique u — v path for some u,v, and r(u,v) =1

= W.lLo.g. u € Candv € C.

= f(C) =1 a controdiction. 0

Claim 4 tells us that any inactive component C' has degp(C) = 0(i.e. it is isolated) or
degp: (C) > 2. From this observation, the result follows. O

To show that the analysis is tight for this algorithm. Consider the following example:

V ={1,2,3,...n,(n + 1)}(1,2,...,(n + 1) are labels on vertices), where 1,2,3,....n € K,, and
edges in K, cost 2 each, edges from (n+1) to each vertex in K, have unit cost. And S; = {1,2,...n}.

The OPT = n. Cost of solution is 2+ (n — 1).

Upper Bound on Integrality Gap Let OPT; denote the optimal solution for primal problem.

OPT <) Ce<2-) ys- [(S), and

ecF’

ZyS f(S) < OPTya = OPTf

OPT
— <2
= OPTf -

thus giving a upper bound on integrity gap.

79

Lower Bound on Integrality Gap Consider a cycle on n vertices, with all edges of cost 1.
The cost of dual solution found by algorithm is 5, which is the optimal for the dual because there
is a primal feasible solution with cost . Therefore,

OPT; = %,OPT =(n—1)

= % (is essentially) > 2

We will discuss ”Facility Location Problem” nextly.

Facility Location Problem

Input:A set C (of cities), a set F' (of facilities). The cost of opening facility ¢ € F is f;. The
cost of servicing a city j € C using a facility < € F' is C;;.

Output: A set I C F of open facilities and a function ® : C' — [such that total cost

O fi+> Csj)
i€l jec

is minimized.
We will discuss a factor-3 approximation algorithm using the primal-dual schema.

80

CHAPTER 18. STEINER FOREST ALGORITHM (CONTINUED)

Chapter 19

Facility Location via the primal-dual
schema

IP for metric facility locatin problem

Indicator variable y; € {0,1} indicates if facility 2 € F' is open
Indicator variable z;; € {0,1} indicates if city j € C is connected to facility i € F.

minimize E yi - fi + E Tij + Cij
i€F i€F,jeC
s.t.

inj > 1 for each j € C
1EF

yi —xij > 0foreachi € F,j € C
y; €{0,1},2z;; € {0,1} foreach i € F,j € C
And the LP-relaxation for this problem is obtained by replacing y; € {0,1},z;; € {0,1} by
yi > 0,25 >0, Vie F,jeC
The dual problem of LP-relaxation

Indocator variables o, §;;
maximize E a;
jeC

s.t.
Zﬂij < fiforeachi e F
jec
aj — fij < cjforeachi€ F,j € C
a; >0,8;; >0foreachi € F,j € C

81

82 CHAPTER 19. FACILITY LOCATION VIA THE PRIMAL-DUAL SCHEMA

Complemetary slackness conditions

For primal problem
(1) For each 7 € F,y; > 0 = Zﬂij = fi
jeC
(2) For each i € F,j € C,z;5 > 0= o — fBij = ¢

For dual problem

(3) For each j € C,a; > 0= inj =1
1EF

(4) For each 7 € F.je C,ﬂi]’ >0=y; = Tij

Interpretation of these conditions is:

Assume that we have an integral primal feasible solution (X,Y"). This induces a set I of open
facilities and an assignment ® of each city to a facility. So let («,3) be a feasible dual solution,
soppose (X,Y) and («,) satisfy the complemetary slackness conditions, then

(1) a facility ¢ € F' is open only when the cities contribute enough towards opening the facility.

(2) a connection from j to 7 is established only if city j pays enough so that after its contribution
towards opening facility ¢ has been subtracted, there is enough to pay for the connection cost to i.

(3) for a integral solution, it is trivial

(4) if a city j € C makes a positive contribution towards opening a facility ¢ € F', and j is open
then j is connected to 1.

Approximation of primal complementary slackness conditions

yi>0:>§§218ij§fi

jec
zij > 0= 5" <0 = fij S ¢
The following algorithm actually maintains conditions (1), (3) and (4), only (2) is relaxed as

showed above.

Algorithm
Phase 1
1. Qa; ZO,,BZ']' =0,Vie F,j¢€ C,IZ@
2. increase a; synchronously for all cities j € C

e at a point where for some edge (4, j), @; = ¢;;, such a edge is said to be tight.

e once an edge (4, j) becomes tight, any further increase in «; implies an increase in 3;; at the
same rate. (so a; — f;; = ¢;; is maintained)

e at some point for some facility i, Z Bij = fi, 1 is said to be temporarily open. (Now f;;’s
jeC
can no longer increase = «;’s for j’s that have tight edges to 7 also can not increase.)

83

e once a facility 7 € F' is open, any unconnected city j € C s.t. (4,7) is tight is connected to 1,
1 is said to be the connecting witness for j.

This terminates when all cities are connected.

Observation: a city j € C can make positive contributions to several facilities = condition (4)
could be violated.

Phase 2

Let F; be the set of temporarily open facilities, let H be a graph with V(H) = F; and E(H) =
{(G,1")|i € Fy,i" € Fy,and3 j € C: B3 > 0 and By; > 0}

Let I be a maximal independent set in H, and this is our set of permanently open facilities.
Now we define ®:

For each j € C, define X; = {i € Fy|B;; > 0}, and |[I N X;| < 1. Now:

(1) if |[I N X;| = 1, that is, there is an open facility ¢ to which j makes a contribution, set
B(j) =

(2) if city j € C has not been connected in step (1), consider ¢, the connecting witness of j, if
i’ €1, set ®(j) =1

(3) if ¢’ ¢ I, ' has some neighbor in H that is open (since I is a maximal independent set), let
" be an arbitrary open neighbor of ', set ®(j) ="

84

CHAPTER 19. FACILITY LOCATION VIA THE PRIMAL-DUAL SCHEMA

Chapter 20

Facility Location (continued)

From F; get I, which are permanently open facilities by finding maximal independent set. Then
we have to determine the connection ¢.

Consider a city j € C, Y; = {i € F|B;; > 0}.

L. If | X; N I| = 1 then set ¢(j) =i where i € X; N 1.

2. Otherwise, let i’ be the connecting witness for j. i’ € I then set ¢(j) =i’

3. Otherwise (i.e. i’ € I) there is a neighbor (in H) of ¢’ in I. Call this neighbor " and set

o(j) ="

Claim: The dual feasible solution («, 3) and the integral primal feasible solution (I, ¢) satisfy
the slackness condition listed.

Proof: Suppose that y; and z;; denote the feasible solution after phase 2.

(1) y; implies ¢ € I. Since I € F; and F; only contain facility ¢ € F s.t.) 3;; = F; and
furthermore, since §;; do not increase once ¢ € F}. Therefore this is true.

(3) is trivial

(4) Suppose that for some i € F,j € C: f;; > 0. If y; = 0, then clearly z;; = 0.

If y; = 1, then is must be the case that for any i’ € F s.t. §;; > 0, then i’ ¢ I.

= ¢(j) is set to ¢ in step 1. Therefore z;; = 1.

(2) Consider i € F,j € C : z;; > 0. This implies that z;; = 1.

(i.e.) city ¢ is the connected to facility j.

This connection can be in (173) of the steps defining ¢. If the connections made in (1) then
a;_pij = C;j. When the connection is made in (3), there are some other cities that are making
positive contribution to i’. We need to show that : «; > Cj;/3.

(Figure 1 comes into this part.)

ftbpF3.8579in2.4829in0ptfigl.gif

Assume that we increase «; simultaneously, say that ¢ was thrown into F; at time ¢; and i’ and
to.

Claim: a; > t2 = a5 > ajr.

a; > Cypj because a; — B = Cjjr. ay > Cyjr. These imply «; > Cyjr and o > Cyjr.

Also o > Cilj = 3a; > Cij + Cilj + Ci/jl > Cij.

Therefore o; > Cjj/3.

85

86 CHAPTER 20. FACILITY LOCATION (CONTINUED)

Next topic is approximation algorithm using Semidefinite-Programming by goemans and Williamson
1995.

Example: Max-Cut

Imput: A graph G = (V, E)

Outout: A partition of V into (S, S) s.t. sum of crossing edge weights is maximized.

Suppose for each vertex i € V, we have a variable y; € {£1}, where y; = 1ifi € S. y; = -1
otherwise. And SUS = V.

— 14, j in the same set then y,y; =1 and (1 — y;9,)/2 = 0.

— 4, j not in the same set then y;y; = —1 and (1 — y;y;)/2 = 1.

We would like to solve the following program.

max Z(i, i) %wzj where y; € {i,j} or y? = 1. This is a strict quadratic program. To relax
this problem, we solve

(1—’07;’1}]') B) . . o
max Z(i, J) 2 Wi where v; are n-dimensional vectors s.t. v;v; = 1.

Chapter 21

Max-Cut via Semidefinite
Programming

MAX CUT

Input:A graph G = (V,]?) with edge weights W : E— > QT B
Output:A partition (S, S) such that the sum total of the weights of edges crossing (.9, S) is maxi-
mized

Applications: MAX-CUT has a lot of applications in VLSI design,also in graph partitioning for
solving partial differential equations(variant of MAX-CUT)

Let us analyze what happens if we throw each vertex into S or S independently with probability %
into the solution.We get a factor % approximation algorithm(in the expected sense)

_ 1
Probledge{u,v}crosses(S,S)] = 2

Therefore the expected contribution of edge {u, v} is 2. Expected cost of the solution = " {uwreE Wuw 2

%OPT. This can be easily derandomized using the method of conditional expectation

Algorithm using SDF:

We use a technique called semi-definite programming to solve this problem.This technique was
invented by Goemans and Williamson in 1995
The following program solves MAX-CUT

(1 - yiy;)
max Z W”T
{i.j}€E

such that y;2 =1
We can observe that this is a quadratic program because sum of the terms in the objective function

87

88 CHAPTER 21. MAX-CUT VIA SEMIDEFINITE PROGRAMMING

v

and constriants are quadratic.Solving quadratic programs is NP-Complete

Consider the following vector relaxation of the quadratic program. Replace y; by a vector V; € R"
We get,

VV
max Z WZJ)
{i.j}eE

such that V;V; =1

This is a vector program which is a relaxation of the quadratic program above because for any
feasible solution (y1,y2,¥3,...-,yn) of the quadratic program, the solution V; = (y;,0,0,....,0)Vi =
1,2,3,....,n is a feasible solution of the vector program. Hence if OPTy, is the cost of an optimal
solution of the vector program then OPTy > OPT

An important observation by Goemans and Williamson is that this vector program is equivalent
to Semi-Definite programming,and SDP can be solved in polynomial time. For this lecture we take
this as given,the proof will be given in the next lecture

Note any solution to the vector program(VP) is collection of n vectors each on the surface of the
n-dimensional unit sphere S, _1
Also note that

ViV = |Vil|Vjlcos(0i;)

Since |V;| = |Vj|, we have V;V; = cos(6;;)

OPTV— Z Wi (1 — cos(0;5))
{m}EE

We can observe that the larger the angle, the more the relaxation says that vertces should lie
on the opposite sides. So, we apply a key idea here here of picking a random hyperplane passing
through the origin

This is done by picking a unit vector r uniformly at random , uniformly from among all unit
vectors in R™.Define the random hyperplane

H = {X|r.X =0}

contribution = 0

Procedure:
Pick x1, 29,3,

define

contribution = Wip

§ ={i[r.V; > 0}

S = {i|r.V; < 0}

, T, from the unit mormal distribution

22

2

1
1@ =Jam

d (T ;%)

2

rX=0

contribution = Wij

89

90 CHAPTER 21. MAX-CUT VIA SEMIDEFINITE PROGRAMMING

define r = (%, %2, Ln)
r= (ylayQ,y37 """ ayn)
probability distribution function for r is given by

| o2
[
o V2

1
V2

)ne_% 27=1 y’L2

= (

1
2

__1 -
ﬂ27r)

which doesnt depend on y;s and is therefore uniform

The probability that for any edge {u,v} that {u,v} crosses barS can be given as 6% Expected
contribution of edge {4, j} is W;;0;;. Total expected cost of the solution is

. > Wity

™ =
{i,j}eE

We are comparing this with

OPTy = % > Wij(1 - cos(6i5))
{ij}eE

We would like to show that , = is not too small as compared to (A=coshij)

5 i) So we look at

Yij
i — T
man (1—cosb;;)
2

2 . 0
— min (———) =«
T 0<8;;<m 1 — cosf

where « is our approximation factor ,oo = 0.8785
which occurs for 8 = 2.2.

theta/1-cos(theta)

1.5

theta = pi/2

theta

91

