22C:21 Lecture Notes
Binary Search and the “Big Oh” notation
Jan 27th, 2006

Example 4. Linear Search.

public boolean linearSearch(int[] list, int key)

{
int n = list.length;
for(int 1 = 0; i < n; i++)
if (key == list[il])
return true;
return false;
}

Here n is the number of slots in the array 1ist that we wish to search. It therefore represents
the input size. Since the code inside the loop runs in constant time, the running time of linear
search is linear in n in the worst case. Note that the running time is not always linear in n;
key may be in the first slot all the time and in such cases the running time is just constant.
Therefore, it is important to add the qualifier “in the worst case.”

Example 5. Binary Search.
We discussed binary search a few classes ago. Here is that code:

public static boolean binarySearch(int[] list, int n, int key)
{
int first = 0; int last = n-1;
int mid;
while(first <= last)
{
mid = (first + last)/2;
if(list[mid] == key)
return true;
else if(list[mid] < key)
last = mid - 1;
else if(list[mid] > key)
first = mid + 1;
}

return false;

}

We will do a worst case analysis of the code. In other words, we will assume that key is not
to be found and the while-loop terminates only when (first > last). The code fragment that
performs initializations (before the start of the while-loop) runs in constant time. Also, the
code fragment inside the loop runs in constant time. Therefore the worst case running time of
the code fragment is

A+ B-t,

where A and B are constants independent of n and ¢ is the number of times the while-loop
executes, in the worst case.

Number of times size of array

the while loop to be examined
has executed (last — first +1)
0 n

1 n/2

2 n/4

i n/2

After ¢ iterations of the while-loop, the size of the “yet-to-searched” array becomes 0. This

means that after ¢ — 1 iterations, this size must be 1. Note that by consulting the above table,
we see that the after ¢+ — 1 iterations, the size of the “yet-to-searched” array is n/2!~!. For
this to be 1, it must be the case that 2! = n, and this happens when t — 1 = loga(n).
Therefore, t = loga(n) + 1 and the overall running worst case running time of binary search is
(A+ B) + B -logy(n). Later we will see that it is not necessary to explicitly specify the base of
the logarithm and in general, we say that the running time of binary search is logarithmic.

Logarithmic functions. If a® = z, then b = log, (). In other words, log,(z) is the quantity
to which a has to be raised to get to z. So, as in the previous example, if 2° = n, then i = log,(n).
The function log,(n) grows very slowly as compared to the linear function, n. For illustration,
consider this table.

n log,(n)
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20

Even when n exceeds a million, log,(n) is still at 20. This means that even for a million element
array, binary search examines (in the worst case) about 20 elements!

One formula concerning logarithms that you should know is called the change of base formula.
This is

This shows how logarithms to different bases relate to each other. For example, this formula
tells us that

__logon logyn

~logy 3 1.58496’

implying that logsn is about two-thirds of log, n. So logarithms to different fixed bases are
within a constant times each other. This is why, in running time analysis, we tend to write
logy n as logn, since it does not matter what fixed base we use for the logarithm.

logs n

“Big Oh” notation

Our run-time analysis aims to ignore machine-dependent aspects of the running time. For
example, when we showed that the running time of a code fragment was A-n+ B, we don’t care
about the constants A or B because these depend on the machine. We simply focus on the fact
that the shape of the function A - n + B is linear. In other words, we “approximate” A-n + B
by n. The “Big Oh” notation permits a mathematically precise way of doing this.

Definition: Let f(n) and g(n) be functions defined on the set of natural numbers. A function
f(n) is said to be O(g(n)) if there exists positive constants ¢ and ng such that for all n >= ny,
f(n) <=c-g(n).

Informally speaking, f(n) is O(g(n)) if there is a multiple of g(n) that eventually overtakes
f(n).

cg(n)
f(n)

(n)

cg(n)

Figure 1: f(n) = O(g(n)) because there are positive constants ¢ and ng such that f(n) < c-g(n)
for all n > ny.

Example 1. Show that 5n + 20 = O(n).

To see this, let ¢ = 6. 6n is a linear function with a greater slope than 5n 4 20. So it is clear that
eventually 6n will overtake 5n + 20. At what point does this happen? Solving 6n = 5n + 20, we
see that 6n and 5n + 20 meet at n = 20. So for all n >= 20, 6n >= 5n + 20.

Example 2. Let A and B be arbitrary constants, with A > 0. Show that An + B = O(n).

Let ¢ = A+ 1. Then, we observe that (A+ 1) -n >= An+ B, for all n >= B. This example is
telling us that whenever the running time of an algorithm has the form An + B, we can simply
say that the running time is O(n).

Example 3. Show that 8n? + 10n + 25 = O(n?).
As in the previous examples, let us select ¢ = 9. We need to ask, when does 9n? start overtaking
8n? 4+ 10n + 257
In* > 8n®+10n+25
n? > 10n+25
(n—=10)-n > 25

Now note that at n = 12, the left hand side (LHS) = 12 and the above inequality is not satisfied.
However, at n = 13, the LHS = 39 and the inequality is satisfied. Furthermore, LHS is an
increasing function of n and therefore the inequality continues to be satisfied for all larger n as
well. In summary, we can set ¢ = 9 and ny = 13.

Example 4. Show that 8n? + 10n + 25 is not O(n).
To obtain a contradiction suppose there are constants ¢ and ng such that

8n2 4+ 10n + 25 <=cn for alln > ng.
Clearly, ¢ has to be larger than 10. So let us assume this. Then, the above inequality implies
8n? <= (c—10)n — 25 for alln > ng.

Now pick n = k(c — 10) where k is a natural number such that k(c — 10) > no. Then the
LHS = 8k*(c — 10)? and the RHS = k(c — 10)? — 25. Clearly, the LHS is larger than the RHS
- a contradiction.

