
22C:21 Lecture Notes

Jan 18th, 2006

Consider a program that manages the payroll of some organization. The three simplest opera-
tions performed by this program include (i) adding a new employee to the payroll, (ii) searching
for an employee, given some information about her, and (iii) deleting an employee who has left
the organization. To keep things simple, let us assume that each employee record consists of
three fields: (i) name, (ii) social security number (ssn), and (iii) salary. Since ssn’s are unique,
the payroll program uses these to access employee records. The three operations mentioned
above, can be stated more precisely as follows.

• INSERT(record). This operation inserts the given employee record into the collection of
employee records.

• DELETE(ssn). This operation deletes the employee whose ssn is given, from the collection.

• SEARCH(ssn). This operation searches the collection for the employee whose ssn is given.

Note that at this point I have specified what operations I would like to perform on the
collection of records, but I have not said anything about how the collection of records is actually
stored in memory and neither have I said anything about how the above operations will be
implemented. This kind of specification defines an abstract data type (ADT). Typically, an ADT
can be implemented using one of several different data structures. A useful first step in deciding
what data structure to use in a program is to specify an ADT for the program.

Now I consider two alternate data structures for the above ADT: (i) an unordered array of
records and (ii) an ordered array of records, ordered by ssn. As you know well, items in an array
can be accessed by providing an index. A key feature of an array (in any high level language)
is that it takes the same amount of time to access any item in an array - whether it is the 10th
item or the 1000th item. Furthermore, this access time is independent of the size of the array.
Due to this feature, an array is said to provide random access to its elements.

Below I describe how each of the three operations can be implemented, first using an un-
ordered array and then using an ordered array. I also discuss the running time of each operation.

Unordered array. I assume that the employee records are stored in an array, in no particular
order. I also assume that there is a variable, say n, that keeps track of the number of employees
currently on the payroll.

INSERT Simply take the record and put it in slot n of the array (I assume that the array is
indexed 0, 1, 2, . . .) and increment n. This takes constant amount of time (independent of
n).

SEARCH Since the array is not ordered in any particular way, this simply involves scanning
through the entire array in some systematic way until the record is found or I am sure that
the record does not exist. This takes time proportional to n, in the worst case. Of course,
the record I am looking for might be the very first record that the algorithm examines,
but in determining the running time of an algorithm, we are usually interested in “worst
case” analysis.

DELETE The DELETE operation requires that we search the array first to find the record with the
given ssn. Once the record is found, the algorithm simply replaces it by the last record
(in slot n− 1) and decrements n. Once the record has been found, it just takes a constant
amount of extra time to delete it, but finding the record takes time proportional to n, in
the worst case (as we see from above). Therefore, the DELETE operation also takes time
proportional to n, in the worst case.

1



Ordered array. I assume that the employee records are stored in an array, in increasing order
of ssn. Again, I assume that there is a variable, say n, that keeps track of the number of
employees currently on the payroll.

INSERT Since the records are sorted, I first need to find where the given record should go in the
given array. This can be done by scanning the array in increasing order of ssn until an
index i is found such that the ssn of the record in slot i is smaller than the given ssn and
the ssn of the record in slot (i+1) is larger than the given ssn. Then the new record should
be placed in slot (i+1). But, before this is done all the records in slots i+1, i+2, . . . , n−1
need to be moved down one slot. This operation takes time proportional to n.

SEARCH Since the array of records is sorted by ssn, I can do a binary search to find the given
ssn. We will discuss this algorithm in the next class and analyze its running time next
week. We will be able to show that in the worst case, the running time of binary search is
proportional to log

2
n. We will also discuss how as n grows, log

2
n grows extremely slowly

relative to n.

DELETE The DELETE operation requires that we search the array first to find the record with the
given ssn. This can be done in time proportional to log

2
n, in the worst case, by using

the SEARCH operation. Suppose the record we are looking for has been found in slot i. To
delete this record, we need to move the records in slots i+1, i+2, . . . , n− 1 up by one slot
each. This takes n − i − 1 steps, which is proportional to n in the worst case. Therefore,
the running time of the entire operation is log

2
n + n, in the worst case. Later we will see

that since n is so much larger than log
2
n, especially for large values of n, this expression

can be approximated by n.

2


