22C:21 Lecture Notes
Running time of Binary Search
Sept 3rd, 2008

The last time we met (Friday, 8/29), we discussed binary search. This was in the context of the
RecordDB class. Here is simplified “generic” version of that code. The input parameters are a
sorted int array called 1list and an int value called key that is being searched for.

public static boolean binarySearch(int[] list, int key)
{

int first = 0;

int last = list.length-1;

int mid;

while(first <= last)

~~ D W N

5. mid = (first + last)/2;
6. if(list[mid] == key)
7. return true;
8. else if(list[mid] < key)
9. last = mid - 1;
10. else if(1ist[mid] > key)
11. first = mid + 1;
}

12. return false;

}

We will first figure out what the maximum number of iterations of the while-loop in the
above code is, as a function of n, the size of the input-array. Note that the portion of the array
list that is yet to be examined is always between indices first and last, inclusive of elements
list[first] and list[last]. Thus the size of the portion of the array list that is yet to
be examined is last — first 4+ 1. The following table shows how this quantity decreases as a
function of the number of iterations of the while-loop.

Number of times size of array

the while loop yet to be examined
has executed (last — first + 1)
0 n

1 n/2

2 n/4

) n/2¢

The while-loop is executed maximum number of times if key is not found. When the function
exits the while-loop, it does so because first has exceeded last and the size of the array “yet-
to-be-examined” has become 0. Suppose that this happens after t iterations. This means that
after ¢ — 1 iterations, this size must be 1. Note that by consulting the above table, we see that
the after ¢ — 1 iterations, the size of the “yet-to-be-examined” array is n/2!~!. For this to be
1, it must be the case that 2t~ = n, and this happens when ¢ — 1 = logy(n). Therefore, the
maximum number of iterations of the while-loop is ¢ = logy(n) + 1.



Logarithmic functions. If a® = z, then b = log, (). In other words, log,(z) is the quantity
to which a has to be raised to get to x. Therefore, if 2! = n, then i = logy(n). The function
log,(n) grows very slowly as compared to the linear function, n. For illustration, consider this
table.

n log(n)
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20

Even when n exceeds a million, log,(n) is still at 20. This means that even for a million element
array, binary search examines (in the worst case) about 21 elements!

We will now introduce the notion of the running time of an algorithm (or a function or a
program) and talk about how the running time of an algorithm may be computed. In this class,
when we talk about “running time” we don’t mean an actual time in milliseconds or microseconds
that the program took to run. Instead, we mean a quantity that is a function of the input size.
For example, if the input to a function foo is an array of length n, then we would like to figure
out how long foo takes to complete as a function of n. We will see many examples of this
throughout the semester.

Define a basic operation as a line of code (or pseudocode) that runs in constant time, i.e.,
time independent of the input size. It is easy to see that all 12 lines in the binary search
function are basic operations. For example, consider the comparison (Line 6)

if(list[mid] == key)
This is a basic operation because:

e Arrays are random access data structures, i.e., given any index ¢, the time it takes to
access slot 4 in the array does not depend on the size of the array or the value of <. Thus
list[mid] is accessed in constant time. Later we will see many data structures that are
not random access, e.g., linked lists, trees, etc. in which the time to reach an item will be
a function of the “distance” to that item from some access point to that data structure.

e The value of key is obtained in constant time.

e The comparison runs in constant time.



Define the running time of an algorithm (or a function or a program) as the number of basic
operations executed by the algorithm, when provided input of size n. To see an example of how
the running time of a function is calculated, consider the binarySearch function above. Suppose
that the body of the while-loop is executed K times.

e There are 3 basic operations before the while-loop, each of which is executed once.
e There is one basic operation after the while-loop, that is executed at most once.

e Each time the body of the while-loop executes, at most 7 basic operations are executed.
Therefore, the body of the while-loop contributes at most 7K basic operation executions.

e Line 4 is a basic operation that is executed K + 1 times.

Adding all of these up, we see that at most
3+1+7K+(K+1)=8K+5

basic operations are executed. From our discussion earlier on the number while-loop iterations
executed, we see that K < log,n. Therefore, the running time of the binarySearch function
is at most 8log,n + 5. Since our calculations were rather rough, we will drop the constant
coefficient, i.e., 8, as well as the lower order term, i.e., 5, to claim that the running time of the
binarySearch function is log, n.

It is worth noting that the analysis above is worst case analysis because it uses the worst case
value for K, i.e., logyn. It is quite possible for K to be much smaller, e.g., if the element we are
looking for is exactly in the middle of the array, it will take just one iteration of the while-loop
to find it. We will typically do worst case analysis in this class.




