
22C:21: Computer Science II: Data Structures
Project 2

Project 2 has 3 parts: (I) implementing a new myGraph class, using the adjacency list repre-
sentation, (II) implementing breadth first traversal and the computing shortest paths between
pairs of vertices, and (III) implementing a geometric routing algorithm called greedy perimeter
stateless routing (GPSR). The three parts are due back separately: Part I on October 31, Part
II on November 7, and Part III on November 14.

1 Part I: The new myGraph class

Implement the myGraph class using the adjacency list representation, as described in the lectures.
You should allow for the edges to have associated real number weights. The main difference
between the new myGraph class and the version you used in Project 1 is in the data structure
used to store the edges of the graph. For this project, define the data member Edges as follows:

LinkList[] Edges;

Slot i of the array Edges stores the neighbors of the ith vertex as a singly linked list. Each Link

object in the link list would contain an integer representing the index of a vertex and a real
number representing the weight of an edge. There is no need for you to implement the LinkList
class from scratch. You should start with Lafore’s LinkList class (to download this class, follow
the link from the course page) and make the following changes to this class.

• Add a data member called numLinks to the LinkList class. Use this to keep track of the
number of Link objects there are in the linked list.

• Add a member function int size() that returns the number of Link objects in the linked
list.

• Add a second insertFirst member function, which takes just an int parameter. This
allows the specification of the double parameter to be optional. In other words, the new
LinkList class should contain both of these functions:

void insertFirst(int id, double dd);

void insertFirst(int id);

Make sure that the interface of your new myGraph class contains all the methods provided in
the myGraph class in our solution to Project 1. This is important because we would like to use
your new myGraph class and our old myGraph class, interchangeably. For example, our myGraph
class contains the function:

void addEdge(String vertex1, String vertex2, double distance);

You should make sure that your implementation contains a function with exactly this function
header. In addition, also provide an addEdge function that just takes the endpoints, vertex1
and vertex2 as arguments.

After you complete your implementation of the new myGraph class, you need to compare
the efficiency of your new implementation to that of the old myGraph class. To ensure that all
of you are doing the same experiment, I would like you to compare your new myGraph class
with our old myGraph class (from the solution to Project 1). Specifically, I would like you
to time two functions from the wirelessNetwork class: (i) the wirelessNetwork constructor
and (ii) the topology control function, to see if these two functions have very different running
times depending on whether we use the old myGraph class or the new myGraph class. To do this
comparison, construct 10 wirelessNetwork objects, each obtained by dropping points uniformly
at random on a 10 × 10 square using varying the number of points. Use 500, 550, 600, . . . , 950
points for the 10 wirelessNetwork objects and report on the time Run topology control on each
of these 10 wireless networks and report the time. Summarize your observations in 3-4 sentences.

1



What to submit: Three files (i) myGraph.java, (ii) experiments.java, and (iii) a file called
results, containing tables of running times and your 3-4 sentence summary.

2 Part II: Breadth First Traversal

Like depth first traversal, breadth first traversal is a certain way of traversing graphs. The main
advantage of using breadth first traversal is that it can be used to compute shortest paths between
pairs of vertices. Breadth first traversal (BFT) is similar in structure to depth first traversal
(DFT) in that BFT also uses a data structure to store vertices as they are being processed.
Recall that DFT used a stack to store vertices that it discovered. BFT uses a data structure
called a queue. A queue is a data structure that returns elements in first in first out (FIFO)
order. More precisely, a queue data structure typically provides the following operations:

enqueue: takes an item and inserts it into the queue.

dequeue: returns the item in the queue that was inserted earliest and removes it.

isEmpty: returns a boolean value indicating if the queue is empty.

Notice that the queue data structure has functionality that is quite similar to that of the stack
data structure, expect that the stack data structure returns elements in the LIFO order while
the queue data structure returns them in the FIFO order. A typical implementation of the queue
data structure will contain at least these three functions and possibly others.

Here is pseudocode for BFT.

visited[source] = true;

Q.enqueue(source);

while(Q not empty)do

current = Q.dequeue();

for each unvisited neighbor v of current do

visited[v] = true;

Q.enqueue(v);

Like DFT, BFT takes a source vertex and starts the traversal from there. Like DFT, BFT
maintains a boolean array called visited to keep track of the vertices already visited. The
difference between the two traversals is that BFT scans the neighbors of the current vertex and
enqueues every unvisited neighbor of the current vertex. You may recall that DFT looks for
and pushes one unvisited neighbor of the current vertex into the stack, before going back to the
beginning of the outer while-loop.

Doing a BFT on a graph defines a breadth first traversal tree. The source vertex is the root of
this tree and for every other vertex v in the graph, we define the parent of v in the BFT tree as
the vertex u from which we first discovered v. The following figure illustrates the notion of BFT
tree. A BFT tree has the nice property that every path in the tree from the root of the tree to
a vertex, is a shortest path in the graph. Thus, one way to compute a shortest path between a
pair of vertices s and t is to do a BFT from s, construct a BFT rooted at s, and then find the
path from t to s in the BFT tree.

Here are some more details on how to implement BFT.

• Lafore has a simple array based implementation of the queue data structure. You will find
a link to this from the course page. Use this implementation to define a queue for BFT.
You will have to read Lafore’s code to find out specific details of this implementation.

2



A

B

D

F

G

A

B

C
D

E

F

G

H

I

1

2

3
6

4

5

7I

E

H

C

8

9

Figure 1: A BFT tree is shown on the right, for the graph on the left. It is assumed that the
source of the traversal is A and the neighbors of each vertex are scanned in alphabetical order.
In the BFT tree, arrows point from a parent to a child. The numbers shown next to the vertices
show the order in which the vertices are discovered. It is easy to verify that this BFT tree gives
shortest paths from vertex A to every other vertex in the graph.

• The pseudocode for BFT that I have shown above is missing the code needed to construct
a BFT tree. It is your responsibility to supply this. You should mimic the approach used
in constructing the DFT tree.

• Like DFT, BFT will only traverse the connected component of the graph that the source
vertex lies in, unless it is forced to restart the traversal from some vertex in each unexplored
component. The above pseudocode does not force BFT to continue exploring other con-
nected components. Your implementation should. Again, you should mimic the approach
we used in DFT.

2.1 Experiments

Perform experiments 2 and 3 from Project 1. But, this time I would like you to compare the
length of the path returned by compass routing (assuming that a path is found) to the length of
a shortest path between s and t. More precisely, here are the experiments you need to perform.

1. Generate a wireless network G with 1000 points distributed on a 10 × 10square. Then
repeat the following 10 times. Uniformly at random, pick a vertex and designate it the
source s and again uniformly at random, pick a vertex and designate it the destination t.
Run compass routing on G, with source s and destination t. Report on whether compass
routing was able to find the destination or not and if it was, report on the length of the
path from s to t that was discovered. Then compute a shortest path between s and t and
report its length. Report the ratio of the length of the path between s and t computed by
compass routing to the length of a shortest path between s and t. Present your results in
a tabular form.

2. Start with the same wireless network G generated for Experiment (2) and run topology
control on it to get a sparser network H . Run Experiment (1) again, but use the network H

this time. Tabulate your results as for Experiment (1). Write 2-3 sentences commenting on
how the path lengths generated in Experiment (2), compare with path lengths generated
in Experiment (1). Try to explain your observations.

3 Part III: Greedy Perimeter Stateless Routing (GPSR)

In a 2000 paper, Karp and Kung described a memoryless, geometric, routing protocol called
Greedy Perimeter Stateless Routing (GPSR) that guarantees message delivery in planar graphs.

3



Like compass routing, GPSR takes as input a graph and a pair of vertices s and t, where s is the
source vertex and t is the destination vertex. The goal of GPSR is to find a route from s to t in
the given graph. As in the case of compass routing, the main restriction on GPSR is that it is
allowed to remember only a very small amount of information about the graph it is traversing.
The fact that GPSR is guaranteed to run correctly only on planar graphs is not a significant
bottleneck. This is because topology control protocols such as XTC, produce a planar graph as
output, when given a UDG as input. Thus we can start with a wireless network modeled as a
UDG, run a topology control protocol such as XTC on it, and then run GPSR on the planar
graph produced by the topology control protocol.

A graph is planar is it can drawn in the plane without any pair of edges crossing each other.
For the rest of the handout, when we talk about a planar graph, we will be referring to a drawing
of the graph in the plane with no edge crossings. A planar graph partitions the plane into faces.
One of these is unbounded and is called the external face, while the rest are bounded and are
called internal faces . See Figure 2 for an illustration. The GPSR algorithm requires the traversal

F
1

s

a

b

c

d

e

f

g

t

F
2

F
3

F
4

(external face)

Figure 2: This planar graph has 4 faces. The three internal faces are labeled F1, F2, and F3.
The sole external face is labeled F4.

of a face of a planar graph using the right hand rule. See Figure 3 for an illustration.

F
1

s

a

b

c

d

e

f

g

t

F
2

F
3

F
4

(external face)

Figure 3: Suppose we start the traversal by going from s to c. The right hand rule requires that
at c, we find the first neighbor of c after s, in counterclockwise order. This neighbor is a. At
a, we find the first neighbor of a, after c, in counterclockwise order. This neighbor is b. If we
continue to apply the right hand rule, we will traverse the entire boundary of F1 and return to
s.

4



The GPSR algorithm operates in two modes: (i) a greedy mode and (ii) a perimeter mode.
The algorithm starts off at vertex s, in the greedy mode, and looks for a neighbor of s that is
closer to the destination t (than s). If such a neighbor exists, then the algorithm “greedily”
picks the neighbor of s that is closest to t. The algorithm proceeds in this greedy mode until it
reaches a vertex x such that all neighbors of x are farther from t than x is. The vertex x is a
“local minimum” because there is no way of reducing the distance to the destination t by simply
moving to a neighbor. GPSR then switches to the perimeter mode, remembering the fact that
it switched into perimeter mode at vertex x.

GPSR continues in perimeter mode until it reaches a vertex y whose distance to t is smaller
than the distance between x and t. Recall that x is the vertex at which GPSR switched from
greedy mode to perimeter mode. The perimeter mode is only intended to recover from a local
minimum and is meant as a short interlude before the greedy mode can be resumed. What
happens in the perimeter mode is described in next paragraph.

Refer to Figure 4 as you read this description. The line from x to t, lies in some face F1

F
1

s

a

b

c

d

e

f

g

t

F
2

F
3

F
4

(external face)

Figure 4: The source vertex s is a local minimum. So GPSR switches to the perimeter mode
immediately. It then applies the right hand rule at s and finds the first neighbor of s, in
counterclockwise order, after t. This neighbor is c. From c, by applying the right hand rule, we
get to vertex a. Note that a is closer to t, than s is. So GPSR switches to greedy mode. It them
goes to vertex g and then to vertex t in greedy mode.

containing x. GPSR starts traversing the face F1 in counterclockwise order starting at x. GPSR
uses the right hand rule described earlier to go from one edge to the next on a face. If GPSR
keeps going, it will traverse the face F1 completely and return to x. However, this will not
happen because at some point GPSR will encounter the edge {a, b} that intersects the line xt.
One of the two end points of this edge, a or b, is guaranteed to be closer to t than x is. On
encountering such a vertex GPSR switches to the greedy mode, if it had not already done so
before getting to edge {a, b}. In any case, it is guaranteed that GPSR will get to a vertex closer
to t than x by traversing a portion of the face F1.

3.1 Details about implementation and experiments

Implement GPSR as a function in the wirelessNetwork class. It should have the following
function header:

public String[] GPSR(String s, String t)

Like the function compassRouting, GPSR takes vertices s and t and returns a String array
containing a path from s to t.

Perform the following experiment. Generate a wireless network G with 1000 points dis-
tributed on a 10 × 10 square. Then repeat the following 10 times. Run topology control on G

5



to get a planar graph H . Uniformly at random, pick a vertex and designate it the source s and
again uniformly at random, pick a vertex and designate it the destination t. Run the two routing
algorithms on H , with source s and destination t. Report on whether compass routing was able
to find the destination or not and if it was, report on the length of the path from s to t that was
discovered. Report on the length of the path that GPSR found between s and t. Then compute
a shortest path between s and t and report its length. Report the ratio of the length of the path
between s and t computed by compass routing to the length of a shortest path between s and
t. Also report the ratio of the length of the path between s and t computed by GPSR to the
length of a shortest path between s and t. Present your results in a tabular form. Discuss is 2-3
sentences the relative performance of compass routing and GPSR.

3.2 What to submit

Submit the files wirelessNetwork.java, experiments.java, and results. Use exactly these
names and do not submit any other files. We will use our myGraph class from the solution to
Project 2.2 to test your submission.

6


