22C:21 Project 2

Due date and time: See submission schedule below.

Introduction. In this project you will implement several versions of a class that imple-
ments the graph data structure and write a program that tests and evaluates this class. A
graph is a structure that consists of wvertices, pairs of which are connected by edges. For
example, here is a graph that might represent flight connections among a few American
cities. The nodes (cities) are shown as points and the edges connecting pairs of cities (flight
connections) are shown as straight line segments.

Chicago

Buffalo

Denver
NewY ork

Atlanta

Houston

A graph can model all kinds of real-life structures. In addition to transport connections,
graphs are used extensively to model circuits etched on a computer chip, organization of
large corporations, networks of computers, the world wide web, evolution of species, states
in games of strategy, etc. Often, a graph allows us to abstract the essential features of the
underlying structure and to reason about the structure more precisely. Chapter 15 in your
textbook deals with graphs, but you don’t have to read the chapter to complete this project.

The MyGraph interface. In this project, you will start with an interface called MyGraph
(to avoid confusion with the Graph interface provided by Bailey), create an abstract class
called MyAbstractGraph that implements MyGraph, and then create two regular classes,

MyMatrixGraph and MyListGraph that extend MyAbstractGraph.
The MyGraph interface is given below.

public interface MyGraph
{
public void addVertex(Object v);
public void addEdge(Object u, Object v);
public void deleteVertex(Object v);
public void deleteEdge(Object u, Object v);



public Vector getVectices();
public Matrix getEdges();
public Vector getNeighbors(Object v);

public int numberOfVertices();
public int number0fEdges();

public boolean areNeighbors(Object u, Object v);
public Vector depthFirstTraversal();

With the exception of the last function, the names of the functions in the above interface
are fairly self-explanatory. Anyway, here is a brief description of each of the functions
mentioned above.

void addVertex(Object v) Add a vertex v to this graph. If v already exists in G, then
this function does nothing.

void addEdge(Object u, Object v) Add an edge between vertex w and vertex v to this
graph. If there is already an edge between u and v, then this function does nothing.
If either of the vertices w and v do not exist in this graph, then the function throws
an exception.

void deleteVertex(Object v) Delete the vertex v from this graph. If v does not exist in
this graph, then this function does nothing.

void deleteEdge(Object u, Object v) Delete the edge between u and v from this graph.
If this edge does not exist in this graph then the function does nothing. If either of
the vertices u and v do not exist in this graph, then the function throws an exception.

Vector getVectices() Return a Vector of vertices of this graph, in no particular order.

Matrix getEdges() Return a Matrix of edges of this graph, in no particular order. The
returned Matrix has two rows and as many columns as the number of edges of the
graph. Each column of the Matrix contains the two end-vertices of an edge.

Vector getNeighbors(Object v) Return a Vector of neighboring vertices of the vertex v,
in no particular order.

int numberOfVertices() Return the number of vertices in this graph.
int numberOfEdges() Return the number of edges in this graph.

boolean areNeighbors(Object u, Object v) Return true if there is an edge between
vertices u and v in the graph. Return false otherwise. Throw an exception if either
u and v does not exist in this graph.

Vector depthFirstTraversal() Return aVector of objects of type SinglyLinkedListElement

that represents a depth-first traversal of the graph. More details in class.



The MyMatrixGraph and the MyListGraph classes. Here I describe two alternate graph
representations, the adjacency matriz representation and the adjacency list representation.
You are required to use the adjacency matrix representation in the MyMatrixGraph class
and the adjacency list representation in the MyListGraph class. For this discussion, let us
suppose that we have a graph with n vertices. Both representations consist of a Vector
called map that contains the n vertices. The Vector map should be viewed as an assignment
of distinct IDs in the range 0 through n — 1 to the n vertices. More specifically, it should
be your view that the vertex stored in slot map[i] has ID s.

In addition to map, the adjacency matrix representation consists of a n X n boolean
matrix, let us call this M, such that MT[i, j] = 1 if there is an edge between the vertex with
ID 4 and the vertex with ID j; otherwise, if there is no edge between the vertex with ID
i and the vertex with ID j, then M[i,j] = 0. In this project, we are only interested in
undirected graphs and so M is symmetric; that is, M[i, j] = M[j,1].

In addition to map, the adjacency list representation consists of a Vector of size n, let us
call this L, each of whose elements is a DoublyLinkedList object. The DoublyLinkedList
object stored at L[] contains all the neighbors of the vertex with ID . Note that if vertices
withs IDs 4 and j are adjacent to each other, then 4 appears in the doubly linked list at L[j]
and j appears in the doubly linked list at L[].

The MyMatrixGraph class and the MyListGraph class should both contain two counters,
let us call these numVertices and numEdges, to keep track of the number of vertices and
the number of edges currently in the graph.

The MyAbstractGraph abstract class. The function depthFirstTraversal that returns
a depth-first traversal of the graph, can be implemented in terms of the rest of the functions
in MyGraph interface. Hence, this function should be implemented in the MyAbstractGraph
class and should be inherited by the MyMatrixGraph class and the MyListGraph class.
depthFirstTraversal can be implemented by a recursive algorithm, which will be dis-
cussed in class.

Testing your implementation. As a test of your implementation, I want you to build
a program that plays the Ladders game. In this two-player game, one player chooses a
starting word and an ending word and the other player constructs a “ladder” between the
two words. A ladder is a sequence of words that starts at the starting word, ends at the
ending word, and each word in the sequence (except the first) is obtained from the previous
word by changing a letter in a single position. For example, suppose the starting word is
flour and the ending word is bread, then a ladder between these two words is: flour,
floor, flood, blood, brood, broad, bread.

On the course page you will find a link to a file called words.dat that contains 5757
five letter English words. This word list comes from Stanford Graphbase, a collection of
interesting data sets and graph algorithms put together by Donald E. Knuth. The original
file can be found at

ftp://labrea.stanford.edu/pub/sgb
This word list is the database that your program will use to play the Ladders game.

In this version of the game, the user is always the one providing a pair of words and

your program is always the one constructing a ladder between a given pair of words. Your



program should start by constructing a graph whose vertices are the five letter words in
words.dat. There is an edge between a pair of five letter words if one can be obtained from
the other by changing a letter in exactly one position. We will call this the ladders graph
on b-letter words. After this graph has been constructed, your program should repeatedly
prompt the user to enter a pair of 5-letter words. When the user responds by entering two
5-letter words, your program will either (i) output a ladder between the two words or (ii)
output a message saying there is no ladder between the two words. Your prompts to the user
should be clear and should provide the user the option of quitting your program whenever
they want.

Submission Schedule. Your submission is broken up into three parts.

Wednesday, Nov 3rd, 5pm Submit the files MyGraph.java and MyMatrixGraph. java.
The class MyMatrixGraph should implement the interface MyGraph. MyMatrixGraph
need not implement depthFirstTraversal and therefore can contain just an empty
implementation of this function. Create a directory called project2.1 with these two
files in it and submit this directory. This submission is worth 30 points. Our solution
will be released soon after the submission deadline.

Monday, Nov 8th Submit the files MyGraph.java and MyListGraph.java. The class
MyListGraph should implement the interface MyGraph. MyListGraph need not im-
plement depthFirstTraversal and therefore can contain just an empty implementa-
tion of this function. Create a directory called project2.2 with these two files in it
and submit this directory. This submission is worth 30 points. Our solution will be
released soon after the submission deadline.

Monday, Nov 15th Submit the following files: MyGraph.java, MyAbstractGraph. java,
MyMatrixGraph.java, MyListGraph. java, and Ladders. java. The MyAbstractGraph
abstract class should implement the MyGraph interface and should contain the imple-
mentation of depthFirstTraversal. The classes MyMatrixGraph and MyListGraph
should extend MyAbstractGraph. This submission is worth 40 points.




