Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 8: Feb 9, 2012 Scribes: Farley Lai and Tina McCarty

1 Watts-Strogatz Model

For a positive integer n and an even integer k, let C(n,k) denote the graph with vertex set $\{0, 1, 2, ..., n-1\}$ and edge set $\{\{i, j\}, 0 \le i, j \le n-1, |i-j| \le k/2\}$.

Figure 1: C(8, 4), newly rewired edges are excluded from future rewire.

The Watts-Strogatz graph[2], denoted WS(n, k, p) is obtained from C(n, k) by replacing each edge in C(n, k) with probability p by a randomly chosen edge.

Fig. 2

Figure 2: C(P) represents the expected clustering coefficient of WS(n, k, p). L(P) represents the expected average path length of WS(n, k, p). It is shown that every 20 vertices receives a rewire of edges.

2 Discussion

Proximity. The base graph C(n,k) starts by connecting vertices that are close by. For example, Grid(n,r): vertex set $\{0,1,\ldots,n-1\} \times \{0,1,\ldots,n-1\}$ and edge set $\{(i_1,j_1),(i_2,j_2)\}$, where $|i_1-i_2|+|j_1-j_2| \leq r$. An example of Grid(4,2) is shown in Fig. 3.

Figure 3: Grid(4, 2)

It can be more abstract. Let M = (V, d) be a metric space. Consider the graph with vertex set V and edge set: $\{u, v : d(u, v) \le r\}$, where r is some parameter.

Randomness is added in a variety of ways to achieve the same effect. Alternative Approach: start with C(n,k). To each vertex u, add an edge $\{u, v\}$ with v chosen randomly.

Result. This result made a lot of sense to sociologists because they believed in two types of edges:

- 1. edges induced by homophily \Rightarrow base graph edges
- 2. edges that correspond to weak ties \Rightarrow random edges

homophily + weak ties \Rightarrow small world property.

Recall.

Figure 4: Alternate edges/connections may dampen the size of the set and may elongate the graph. Alternate edges/connections can also make the lengths to other edges quicker.

Clustering Coefficient¹ $\uparrow \Rightarrow$ Average Path Length \uparrow

Diameter. The Diameter of a Cycle Plus a Random Matching[1]. See Fig. 5. for example.

¹Node based definition of clustering coefficient.

Figure 5:

3 Kleinberg's Question

Watts-Strogatz model[2] is small world. Does it also allow efficient decentralized (local) search?

Example. Condider WS(n, k, p). Let s and r denote sender and receiver. The sender, knowing only r's label, has a package that needs to be sent to r. Typical Step: node v on receiving the package, either:

- 1. If v has a neighbor closer to r than itself, v sends the package to the neighbor closest to r.
- 2. Otherwise, v gives up.

Questions. Suppose we pick s and r randomly and perform graphic greedy routing many times:

- What fraction of these experiments is successful?
- What is the average path length of the successful experiments?

4 Kleinberg's Model[3]

Let us use $K(n, r, q, -\alpha)$ to denote the graph obtained by starting with Grid(n, r) and adding random edges as follows: To each vertex u, add q random edges $\{u, v\}$ with v picked out with a probability proportional to $d(u, v)^{-\alpha}$. If $\alpha = 2$, then $d(u, v)^{-\alpha} = 1/d(u, v)^2$. Fig. 6 demonstrates the model.

Figure 6: One hop edges have higher probability to be connected than 2 or more hop edges. If $\alpha = 1$, then the probability distribution is uniform such that no differentiation between near neighbors and far nodes.

Results.

- 1. For $\alpha = 0$, any decentralized algorithm requires at least $(n^{2/3})$ hops
- 2. For $\alpha = 2$, geographic greedy routing discovers paths of expected length $O(\log 2n)$

Figure 7: The correlation between α and the expected path length.

References

- B. Bollobs and F. R. K. Chung. The diameter of a cycle plus a random matching. SIAM J. on Discrete Mathematics, 1(3):328–333, 1998.
- [2] Duncan J.Watts and Steven H. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393:440–442, 1998.
- [3] J. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.