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1 Watts-Strogatz Model

For a positive integer n and an even integer k, let C(n, k) denote the graph with vertex set
{0, 1, 2, ..., n− 1} and edge set {{i, j}, 0 ≤ i, j ≤ n− 1, |i− j| ≤ k/2}.

Figure 1: C(8, 4), newly rewired edges are excluded from future rewire.

The Watts-Strogatz graph[2], denoted WS(n, k, p) is obtained from C(n, k) by replacing each
edge in C(n, k) with probability p by a randomly chosen edge.
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Figure 2: C(P ) represents the expected clustering coefficient of WS(n, k, p). L(P ) represents the
expected average path length of WS(n, k, p). It is shown that every 20 vertices receives a rewire
of edges.

2 Discussion

Proximity. The base graph C(n, k) starts by connecting vertices that are close by. For example,
Grid(n, r): vertex set {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1} and edge set {(i1, j1), (i2, j2)}, where
|i1 − i2|+ |j1 − j2| ≤ r. An example of Grid(4, 2) is shown in Fig. 3.
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Figure 3: Grid(4, 2)

It can be more abstract. Let M = (V, d) be a metric space. Consider the graph with vertex set
V and edge set: {u, v : d(u, v) ≤ r}, where r is some parameter.

Randomness is added in a variety of ways to achieve the same effect. Alternative Approach:
start with C(n, k). To each vertex u, add an edge {u, v} with v chosen randomly.

Result. This result made a lot of sense to sociologists because they believed in two types of
edges:

1. edges induced by homophily ⇒ base graph edges

2. edges that correspond to weak ties ⇒ random edges

homophily + weak ties ⇒ small world property.

Recall.
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Figure 4: Alternate edges/connections may dampen the size of the set and may elongate the graph.
Alternate edges/connections can also make the lengths to other edges quicker.

Clustering Coefficient1↑ ⇒ Average Path Length ↑

Diameter. The Diameter of a Cycle Plus a Random Matching[1]. See Fig. 5. for example.

1Node based definition of clustering coefficient.
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Figure 5:

3 Kleinberg’s Question

Watts-Strogatz model[2] is small world. Does it also allow efficient decentralized (local) search?

Example. Condider WS(n, k, p). Let s and r denote sender and receiver. The sender, knowing
only r’s label, has a package that needs to be sent to r. Typical Step: node v on receiving the
package, either:

1. If v has a neighbor closer to r than itself, v sends the package to the neighbor closest to r.

2. Otherwise, v gives up.

Questions. Suppose we pick s and r randomly and perform graphic greedy routing many times:

• What fraction of these experiments is successful?

• What is the average path length of the successful experiments?

4 Kleinberg’s Model[3]

Let us use K(n, r, q,−α) to denote the graph obtained by starting with Grid(n, r) and adding
random edges as follows: To each vertex u, add q random edges {u, v} with v picked out with a
probability proportional to d(u, v)−α. If α = 2, then d(u, v)−α = 1/d(u, v)2. Fig. 6 demonstrates
the model.
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Figure 6: One hop edges have higher probability to be connected than 2 or more hop edges.
If α = 1, then the probability distribution is uniform such that no differentiation between near
neighbors and far nodes.

Results.

1. For α = 0, any decentralized algorithm requires at least (n2/3)hops

2. For α = 2, geographic greedy routing discovers paths of expected length O(log 2n)
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Figure 7: The correlation between α and the expected path length.
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