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1 Proof Continued from the Previous Class

Prob[X > (1 + δ) µ] < e
−µδ2

4 when,δ ≤ 2e-1

Now, µ = C|Si|

δ = 1
4

So, plugging the values in the bound provide us with the following equation:

e
−C|Si|· 1n

2

4 = e
−C|Si|

64

[Ensures every time that the elements are independent]

Now, p(n) ≥ C· lnnn where, C is contant

So, C= p(n)(n-1) ≥ C·ln n
Plugging this into the bounds, we get an upper bond of

e
−C lnn|Si|

64 As, eln = 1
n

Picking C large enough gives a bound ( 1
n) |Si| ≤ 1

n

By this upper bound is bound as (5C
4 )|Si| ≤ 1

n

So, Prob[|Si+1| > 5C
4 |Si|] ≤

1
n

Simmilarly, Prob[|Si+1| < C
4 |Si|] ≤

1
n 2

Lemma Let, |Ti| ≥ n−1
2 then,

Prob[C4
i+1 ≤ |Si + 1| ≤ 5C

4
i+1] ≥ 1- 1

n

This will be true, only if S0, S1,......, Si+1 follow this rule.Now as we know, this is true with a
very high probability. As the probability of its non-occurence is only 2(i+1)

n . With changes in the
value of C[constant] this probability becomes 2

n , which is very small.

Theorem Let u,v ∈ V. Then, with probability ≥ 1- 1
n
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d(u,v) ≤ O( lnn
lnC )

This goes on until we reaches |Ti| < n−1
2

Now, as we reached to the end set, say Si+1 then the ball having the reached nodes strictly has
more than half of the nodes of the graph.

So, d(u,w) = lnn
lnC

And, d(w, v) = lnn
lnC

The above relation was proved assuming, p(n) ≥ C lnn
n

But, the claim is actually true for, p(n) > 1
n

Now, a big problem occurs due to this. As, these two points occur at different times.
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2 Phase Transition In ER Graphs

Lemma If, p(n) < lnn
n then with probability → 1 as n → ∞, the graph has atleast one isolated

vertex. This shows disconnectivity of the graph.

Proof For a vertex u ∈ V, let:

Iu =

{
1 if u is isolated
0 otherwise

Prob[Iu = 1] = (1-p)n-1 ∼ e-p(n-1)

So, E[Iu] ∼ e-p(n-1)

Let, X=
∑

Iu = ne-p(n-1)

Suppose, p = λ lnn
n where, λ < 1

then, E[X] = ne-λln n = n1-λ

if, λ = 0.9, then n0.1 is expected isolated graph.
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Note that, As n → ∞, E[X] → ∞
Further calculation involving the variance can be used to show that the,
Prob[there exist an isloated vertex] → 1 as n → ∞ 2

3 Watts Strogatz Model

The table below describes the various networks with their degree and cluster coefficient.[1]

N Average degree CC CC of corresponding ER Graph
Actor Network 225,226 61 0.79 0.00027

Power Grid 4941 2.67 0.080 0.005
C.elegance 282 14 0.28 0.05

There are observed networks that show the properties like:
1. Sparse(average degree is small relative to N)
2. Small average path length relative to N
3. Cluster coefficient is highrelative to that of corresponding ER graph.

Ques) Is there a simple random graph model with these 3 characteristics?
Answer) If we take a Circular Graph : C(n,k)
for n= 10, k=4, C(10,4) is like:

Then, the above discussed points are satisfiable as:

1. Sparsity is controlled by k, if k is large, sparsity is less.

2. Cluster coefficient is high, as every V-node is connected to the neighbours, half on one side
and half on other side, and these neighbours are also connected in simmilar way.

3. Average path length depends on k, for high value of k, it will be small.

Watts Strogatz Model WS(n,k,p) where 0 ≤ p ≤ 1
Now, we choose 2 vertex and one edge and reconnect it,
As, p goes from 0 to 1, randomness of the graph increases.
At, p = 1, Original graph is completely lost and we have a totally random graph ER(n, ?)
At, p = 0, we have an original graph C(n,k).
In intermediate region the property of graph is like :
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So, at very small randomness, we see a lot of decrease in the path length but we do not see a
lot of change in clustering coefficient.
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