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1 Matching

We want to extend the matching algorithms to a decentralized solution. We do
this by turning the matching problem into a market.

We begin with a set B of n buyers and a set S of n sellers. Each buyer i ∈ B
has, for each seller j ∈ S, a valuation vij of that seller’s item to that buyer.
If we have the situation where |B| 6= |S|, we can fabricate additional sellers or
buyers as necessary, setting vij = 0 if either the associated seller or buyer was
added.

Let pi be the price (to be determined) for which item j is sold. If bidder i
wins this item, they will have a payoff of vij − pi.

A prefered seller is one that maximizes the payoff for a given buyer. Formally,
the set Prefi = {j | arg maxj vij − pi}.

We consider the bipartite graph of buyers and sellers, where an edge exists
between a buyer and its prefered sellers. A set of market-clearing prices are
prices that yield a perfect matching in the prefered sellers graph. If a set of
market-clearing prices exists, it will maximize the social good; each buyer will be
assigned to their ‘favorite’ seller, and each seller can sell their item for maximal
revenue.

Surprising Statement 1. For any any set of buyer valuations, there exists a
set of market clearing prices.

Surprising Statement 2. For any set of market-clearing prices, any resulting

perfect match yields maximum total valuation, which we define as
∑
j

[vij − pi].

We note that the sum above can be expanded to
∑
j

vij −
∑
j

pi. We note

that this value is independent of the particular choice in perfect matching, in
cases where multiple exist. This means that any perfect matching maximizes
this value. Buyers will be made “maximally happy,” and sellers maximize their
prices. In effect, the most possible money is changing hands.

We would like to determine a set of market-clearing prieces, given the val-
uations of the buyers. If we have global knowledge of all valuations, we can
employ the augmented path algorithm discussed previously or some other pre-
fect matching algorithm. However, we would not expect such an aboundance of
information in real world situations. We examine the Gale-Shapely matching
algorithm to set market-clearing prices using only local information. We can
also refer to Demage, Gale, and Sotomajor (1986) and Egervány (1916) for more
information.
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(a) G.S. (1) (b) G.S. (2)

(c) G.S. (3) (d) G.S. (4)

Figure 1: Gale Shapeley Algorithm Example: In its final step, we have
{(1, 1), (2, 3), (3, 2)} as our perfect matching.

Gale-Shapely Algorithm

(1) All sellers set their prices to zero.

(2) Buyers choose their prefered sellers.

(3) Does a perfect matching exist? If yes, we exit, accepting the current set
of prices.

(4) Since a perfect matching does not exist, there must be some constriced
set. We find the constricted set(s).

(5) Each seller in a constricted set increases the cost of their item by one.

(6) If minj pj > 0, each seller reduces their price by minj pj .

(7) Go to (2).

(See Figure 1 for an example execution.)
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Proff of Termination in Gale-Shapely

We consider two payoff potentials; define

Pb =
∑
j

maxi(vij − pi)

as the maximum payoff potential for buyers and

Ps =
∑
i

pi

as the maximum payoff for sellers.
Consider Ps + Pb as a utility function. At each iteration, the program will

either terminate in step (3), or we have a constricted set. Let S denote the
constricting set, and let N(S) denote the union of all neighbors of S. Ps will
increase by |N(S)|, and Pb will decrease by |S|. But by definition of the con-
stricted set, |S| > |N(S)|, so Pb + Ps decreases. Additionally, vij ≥ pi ≥ 0
for all i, j, so Ps + Pb is bounded below by zero. Also, step (6) leaves the sum
unchanged.

Since the utility is decreasing at every step and bounded below, we know
the algorithm will complete in finite time.

2 Per-Click Adertisement

Suppose we have some number of advertisement slots (sellers) and some number
of advertisers (buyers). Again, we assume that the number of sellers and the
number of buyers are equal; if they are not, we add sellers of value zero or buyers
with zero wallet, as appropraite.

This problem could be approached as before, wherein we assign a fixed price
to each slot. vij may denote the expected revenue from buyer j using slot i.
However, and advertiser might not want to reveal their valuations. We need a
mechanism that maximizes social good (that is, the buy obtains the best value
and the seller makes profitable sales), but without revealing valuations. For
these, we have auctions.

The Vickery, Clark, Groves principle (VCG) is an auction design that can
be thought of as a generalization of Second Price Auctions, where truth telling
remains the dominating strategy. In auctions with VCG, the winning bidder is
charged a price determined by the “harm” dome to the overall social good.

Consider a collection of bids b1 > b2 > · · · for some Second Price Auction.
If bidder 1 has not been a part of this auction, the only person harmed is bidder
2; all other bidders would still lose. The harm done by bidder 1 is the payoff
bidder 2 consequently lost.

In general, if S is the set of sellers and B is the set of Buyers, then V S
B is

the maximum total valuations over all perfect matchings, that is, the socially
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optimal outcome. Note that if item i is assigned to buyer j, then V
S\{i}
B\{j} is the

maximum valuation for everyone else.
It follows that, if bidder j wins item i, the they are responsible for social

harm given by

V S
B\{j} − V

S\{i}
B\{j}

We establish the following protocol:

• Buyers bid on slots (they needn’t tell the truth).

• Find a set of market clearing prices.

• Charge bidders VCG prices, that is, pij = V S
B\{j} − V

S\{i}
B\{j}

We claim that this protocol yields a dominating strategy of truth telling,
and that the market clearing prices maximize total value.

If this protocol does, in fact, yield a dominating strategy of truth telling, the
second part is easy; if all bids were honest, the market clearing prices provide
the socially optimal output, by their definition.

3 Dominating Strategy in VCG Auctions

Suppose that when buyer j bids honestly, she wins item i. The payoff to buyer
j for winning item i is vij − pij . Notice that the prices are personalized. Fur-

thermore, pij == V S
B\{j} − V

S\{i}
B\{j} depends on the other buyers’ bids. As such,

if bidder j bids dishonestly and still wins item i, the payoff for bidder j is
unchanged.

Suppose instead that bidder j bids dishonestly and subsequently wins some
other item h. The payoff for bidder j is now vhj − phj . To benifet from this lie,
bidder j needs

vhj − phj > vij − pij

to hold. If, instead, we show that vhj−phj ≤ vij−pij , then the above inequality
does not hold and there is no incentive for bidder j to bid dishonestly.

vhj − phj
?
≤ vij − pij

vhj −
(
V S
B\{j} − V

S\{h}
B\{j}

) ?
≤ vij −

(
V S
B\{j} − V

S\{i}
B\{j}

)
vhj + V

S\{h}
B\{j}

?
≤ vij + V

S\{i}
B\{j}

Now, we know that V S
B is both socially and individually optimal. We had

assumed that bidder j is assigned item i when she bids honestly. As such, V
S\{i}
B\{j}

is the same assignment to everyone, exclusind item i and bidder j. However,
if these assign j to i optimally, it follows that any assignment of j to item h
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is suboptimal. Thereofre, V
S\{h}
B\{j} ≤ V S

B = V
S\{i}
B\{j} and vhj < vij . It follows

that vhj +V
S\{h}
B\{j} ≤ vij +V

S\{i}
B\{j}, concluding the proof and showing that honest

bidding is the dominating strategy.

It should be noted that, while this policy maximises social wellfare, Google
uses a “Generalized Second Price Auction”. Google isn’t interested in social
welfare; they want to maximize the seller’s happiness.
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