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Auctions and Matching

An auction is a price setting mechinasm, or a way to exchange goods between
individuals. Often, goods have a predetermined priceassigned to them; whether
a buyer is shopping for a new shirt, groceries, or any other commonly available
good, the price is fixed and static. Granted, a savvy shopper will “shop around”
in an effort to find the best price between stores, but each store has a price that
incorporates the production cost, distributor’s cut, etc.

Naturally, the buyer wishes to minimize his spending, and the store to max-
imize its profit. This is mitagitated when, in the above example, we assume
the items are commonly available. There is an understanding of what price a
desired item merits. With 1-of-a-kind items, however, the buyer can no longer
shop around. The buyer wants a price that is low enough that the buyer believes
they are geting a good deal, and the seller wants a price that is high enough to
make an acceptable profit.

An auction is a mechanism to establish such a price. We will focus primarily
on English auctions (ascending price) and Dutch auctions (descending price).
In English auctions, buyers bid the price they are willing to pay. In Dutch
auctions, sellers lower the asking price until a buyer is willing to buy. We can
concieve variants, such as the London Bus Systems where the value of an item
increases when sold in combination with another item. (The collection is valued
greater than the sum of its parts.) Likewise, auctions could consist of many or
single buyers, many or single sellers, etc.

While auctions are often dynamic in nature, we consider static counterparts.
Each potential buyer will submit a bid, and all bids are reviewed simultaniously.
In a First Price Auction, the highest bidder wins the item and pays the value
of her bid. In a Second Price Auction, the highest bidder wins the item and
pays the value of the second highest bid. (Second Price Auctions are also refered
to as Vickery Auctions, in honor of the 1996 Nobel Prize winner Vickery that
developed them. Intuitively (we show this formally below), Second Price Auc-
tions incentivize bidders to bid their true value of the item; a winning bid will
always pay less than its value (exclusing identical bids). In First Price Auctions,
however, bidders are encouraged to “shade” their bids in an effort to pay less.

We begin with the following assumptions:

• We assume there are many buyers for a single item.

• Each buyer i has some intrinsic valuations vi for the item. These values
are hidden from other bidders.

• Each buyer i will bid the value bi. These values are also unknown to the
other bidders.
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Bidding Strategy for Second Price Auctions

A bidding strategy is a function that maps the hidden valuations to the offered
bid. We show that an honest bidding strategy dominates in Second Price Auc-
tions. We proceed casewise:

Case 1: Suppose bidder i bids honestly, with bi = vi.
If bidder i loses, she has payoff zero; nothing lost, nothing gained.
If bidder i wins, she pays the second highest bid, bk < bi. Note, this implies

bk < vi. Then bidder i has payoff vi − bk > vi − vi = 0. Then the bidder has
positive payoff.

Case 2: Suppose bidder i overbids, with bi > vi.
If bidder i loses, she has payoff zero.
If bidder i wins, she pays the second highest bid, bk < bi. If bk ≥ vi, bidder

i is still happy: vi − bk ≥ vi − vi = 0. However, if bk > vi, bidder i experiences
payoff vi − bk < 0. (The buyer has overpaid and has Buyer’s remorse.)

In all cases, this strategy yields payoff bounded by the honest strategy in
Case 1.

Case 3: Suppose bidder i shades her bid, with bi < vi.
If bidder i wins, she pays the second highest bid, bk < bi. Note, this implies

bk < vi. Then bidder i has payoff vi − bk > vi − vi = 0. Then the bidder has
positive payoff.

If bidder i loses, she has payoff zero. Let bj denote the winning bid. If
bj > vi, bidding honestly would not have helped. If, howveer, bj < bj < vi,
bidder i has received a payoff of zero, where bidding honestly would have won
her the item and resulted in a positive payoff.

In all cases, this strategy yields payoff bounded by the honest strategy in
Case 1.

Since both Case 2 and Case 3 are dominated by Case 1, we have that bidding
honestly is the dominating strategy for Second Price Auctions.

Bidding Strategy for First Price Auctions

If bidder i loses, she has payoff of zero. If bidder i wins, she has payoff vi − bi.

• If bidder i bids honestly, she has payoff zero in both cases.

• If bidder i bids bi > vi, bidder i has negative payoff.

• If bidder i bids bi < vi, but still bids high enough to win, she receives
payoff vi − bi > 0.

2



The only scenario in which bidder i receives positive payoff is to shade her
bet. If she bids close to her true value and wins, her payout is small and she
experiences buyer’s remorse; perhaps she could have won bidding less. If she
bids far less than her true value, she runs the likelihood of losing the auction.
The question becomes the level at which to shade. The bidder must find some
way to judge the competition: the number of bidders and estimate their values
or bids.

We have assumed that all bidders are playing the same strategy, that all
valuations vi are secret, and that the seller will sell. In this case, we find an
equilibrium strategy to shade the bid bi = n−1

n vi.

Seller Performance

Assume n bidders have valuations are drawn uniformly at random in the interfal
[0, 1]. Index bidders in increasing bid value: b1 < .... < bn. It follows from the
random valuations that the expected bid of bidder i can be given E[vk] = k

n+1 .
Now, in a Second Price Auction, bidder n will win the bid and pay the price

of bidder n− 1, which we have at the expected price of n−1
n+1 .

Conversely, in a First Price Auction, bidder n will pay their own bid. Bidder
n has valuation vi expected to be n

n+1 . However, bidders will shade their bids.

There exists an equilibruim strategy of shading by a factor of n−1
n . This this

case, the winning bid will give the seller a profit of n
n+1 ·

n−1
n = n−1

n+1 .

We have seen that both First Price Auctions and Second Price Auctions will
yield the same profit to the seller when valuations and bids are hidden. However,
if a seller can convince the bidder to shade lass than the above equilibrium
strategy, the seller will prefer a First Price Auction and hope for a better price.
If the seller cannot “rub” the buyer, a seller will accept a Second Price Auction.
This is called “Revenue Equivalence.”

It should be noted that similar calculations can be made for other auction
types. For instance, an All Pay Auction is one in which a bidder pays their bid
value, regardless of whether or not theirs is the higest bid. Formally, they have
a losing payoff of −bi and a winning payoff of vi − bi. These and other auction
types are used to control bidder behavior. For instance, if we had to pay a fee
to apply for a grant, we would apply for fewer. It should also be noted that
Revenue Equivalence exists for these types of auctions.

We assumed that the seller is always willing to sell. If a seller withdraws,
the seller can learn a buyer’s valuations. Presumably, the seller can then take
advantage of this information. However, the seller, presumably, has his own
valuation of the item begin sold and would refuse to sell for little or no profit.

To account for this, we can extend Second Price Auctions with a reserve
price. In this auction, the seller acts as a bidder as well; the bidder “bids” a
reserve price r. Because this is a Second Price Auction, we have honest bidding
as the dominating strategy. As such, we accept r = u, where u is the (seller’s)
true valuation of the price. Conversely, in a First Price Auction, the seller sets
r ≥ u, akin to a bidder’s desire for shading. Just as a bidder does not shade
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so much that they risk losing the auction, so too will a seller have insentive to
place r ≈ u, to increase the likelihood that he is able to sell the item.

One can also construct All Pay auctions with reserve. Refer to Chapter 9 in
the text.

Matching

We shift our focus now to matching algorithms in bipartite graphs. We assume
there are 2n nodes (n on each side of the bipartite graph). This assumption is
relaxed later. Edges denote preference.

For instance, one matching problem could match a set of X faculty to be
assigned to the set of Y offices. Each faculty member x ∈ X denotes which
offices y ∈ Y are acceptable. This generates the edge (x, y). We assume that all
edges are of uniform weight. A faculty member either prefers an office or does
not; offices are not ranked. We then want to maximize some utility, in this case
“rank weighted happiness.” Each faculty member has some ranking, i.e. Full
Professors are ranked higher than Associate Professors, so their happiness is of
higher priority.

A perfect matching is one in which every faculty would be assigned an office
of their preference. The Augmented Path Algorithm is one algorithm that can
detect perfect matchings.

(1) Select some edge.

(2) Find a path linking to unselected nodes, either directly, or using one of
the already selected edges.

(3) Deselect the previously selected edges used.

(See Figure 2 for an example).
When a perfect matching exists, this algorithm finds one in O(|V | |E|).

However, there are certainly cases in which perfect matchings do not exist.

Theorem 1 (Matching Theorem). If there is a perfect matching if and only if
there is no constricted set.

A constricted set is one in which i nodes have (between them all) k < i
neighbors. Refer to Figure 1 for an example.

There exist methods for weighted edges, as well. Refer to the Hungarian al-
gorithm ( O(n4) ) or the Munkres algorithm ( O(n3) ). Both, however, presup-
pose the presense of a central planner. The solution is found by the algorithm
acting upon the graph, not by nodes (agents, or individuals) with only local
information within it. We extend to local methods using auctions next time.
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Figure 1: An example constricted set. Here, nodes 1 and 2 may have other
neighbors, but nodes 3, 4, and 5 have only 2 neighbors between them, providing
a constricted set.
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(a) Possible Input (b) Augmented Path (1) (c) Augmented Path (2)

(d) Augmented Path (3) (e) Augmented Path (4) (f) Augmented Path (5)

Figure 2: Here is one example progression of the Augmented Path Algorithm.
In Step 2, we remove the current edge and add two new edges, one incident on
each of the previous edge’s endpoints. In each subsequent step, no such removals
are necessary.
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