Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 25: April 17, 2012 Scribes: Farley Lai and Tina McCarty

1 Game-theoretic Modeling of Traffic Congestion

Consider the following algorithm that converges to an N.E.[1]:

GMTG(G, (p₁, p₂, ..., p_n))
1. start with an arbitrary strategy choice (p₁, p₂, ..., p_n).
2. while (p₁, p₂, ..., p_n) is not a N.E.:.
3. pick p_i that isnt the best response to the remaining choices (p₁, p₂, ..., p_{i-1}, p_{i+1}, ..., p_n).
4. replace p_i by a shorter path p_i (a better response)

Theorem 1 Every traffic congestion game has a pure strategy N.E.

Proof: Define a potential function and show each iteration improves the function in the finite space of pure strategies. For an edge $e \in E$ across which x cars are traveling in (p_1, p_2, \ldots, p_n) , define

$$Potential(e) = T_e(1) + T_e(2) + \ldots + T_e(e) = \sum_{j=1}^{x} T_e(j)$$
$$Potential(p_1, p_2, \ldots, p_n) = \sum_{e \in E} Potential(e)$$

In a typical iteration of the while-loop, let e be an arbitrary edge on path p_i . Let x be the number of cars traveling across e just before this iteration. Potential(e) decreases by $T_e(x)$. That is, potential along p_i decreases by the sum of travel times along p_i . By the same argument, potential along e increases by $T_e(y)$ where y = volume of traffic along e after i joins this edge. In other words, potential along p_i increases by travel time along p_i Since travel time along p_i is strictly smaller than travel time along p_i , the potential strictly falls $\sum_{j=1}^{x} T_e(j)$ This shows that there always exists a pure strategy N.E. \Box

Theorem 2 For every traffic congestion game, there is a pure strategy N.E. (not every) whose cost is within 2 times of the cost of the welfare maximizing solution

Proof: Let Z^* be a welfare maximizing strategy choice. In other words, Z^* minimizes the sum of travel times of all players. Let TTT(Z) denote the sum of travel times of all players for a strategy choice Z. $xT_e(x)$ is the contribution of e to TTT(Z).

$$Potential(e) = T_e(1) + T_e(2) + \dots + T_e(x)$$

 $TTT(e) = T_e(x) + T_e(x) + \dots + T_e(x) = xT_e(x)$

Suppose $T_e(y) = a_e y + b_e$, the following figure shows the difference of the areas that represent Potential(e) and TTT(e).

Figure 1: It is easy to see that $Potential(e) \ge TTT(e)/2$ in terms of the sum of the area.

We have shown $TTT(e)/2 \leq Potential(e) \leq TTT(e)$. For any strategy choice $Z : TTT(Z)/2 \leq Potential(Z) \leq TTT(Z)$ Suppose we run our algorithm starting from Z^* in the computation, $Z^* \longrightarrow Z$ (potential falls, TTT might increase)

 $\begin{array}{l} \Rightarrow TTT(Z)/2 \leq Potential(Z^*) \leq TTT(Z^*) \\ \Rightarrow TTT(Z)/2 \leq Potential(Z) \\ \Rightarrow TTT(Z)/2 \leq TTT(Z^*) \\ \Rightarrow TTT(Z) \leq 2TTT(Z^*) \end{array}$

References

[1] Tim Roughgarden and Éva Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, March 2002.