Lecture Notes: Social Networks: Models, Algorithms, and Applications

Lecture 13: Feb 28, 2012

Scribes: Rahil Sharma and Vivek Sardeshmukh

1 Framingham Heart Study

The results in [1] are due to mainly 3 causes

- 1. Homophily
- 2. Contagion/influence
- 3. Confounding factors

Homophily and Contagion are difficult to distinguish (since they used direction of friendship). Cosma Rohilla Shalizi has written a review about the above results on his blog¹. In this lecture, we will discuss the arguments given on this blog. He tries to answer the question - "Can we nonetheless tell whether bridge-jumping (a particular trait) spreads by (some form) of contagion, or rather is due to homophily, or, if it is both, say how much each mechanism contributes?"

1.1 Graphical Model

If Joey is obese, does her friend Irene obese too? Let answer this question by drawing relevant graphical model (see Figure 1). Denote,

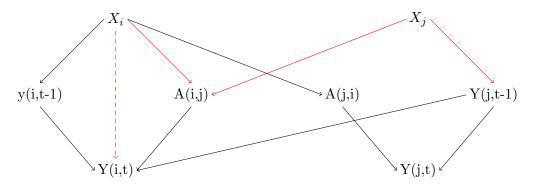


Figure 1: Graphical Model for factors affecting traits of friends

- i for Irene and j for Joey
- Y(i,t)=1, if Irene obese at time t
- Similarly Y(i,t-1)=1, if Irene was obese at time t-1
- Similarly define Y(j,t) and Y(j,t-1)

¹http://cscs.umich.edu/~crshalizi/weblog/656.html

• A(i,j)=1, if Irene regards Joey as a friend

We want to know whether the later variable influences the former.

See link y(j,t-1) to y(i,t). Its called an inspirational link. that is Joey gets inspiration to become obese at time t from Irene who was obese at time t-1.

1.2 Logical Regression

The above result can be explained with logical regression also. A logical function is a function of form $f(x) = \frac{1}{1+e^{-wx}}$, where w is some kind of weight. Here we can assign weight to be traits of a person and define the probability of a person being obese given trait X as

$$P(obese|X) = \frac{1}{1 + e^{(w_0 + \sigma w_i k_i)}}$$

To hold the axioms of probability, define

$$P(\neg obese|X) = \frac{e^{(w_0 + \sigma w_i k_i)}}{1 + e^{(w_0 + \sigma w_i k_i)}}$$

Now if the ratio $\frac{P(\neg obese|X)}{P(obese|X)} > 1$ classify this as not obese.

References

[1] N.A. Christakis and J.H. Fowler. The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357(4):370–379, 2007.