
22C:196 Homework 4
Due: Wednesday, 12/18 at final exam

Notes: (a) Computer Science Ph.D. students are required to solve Problems 1, 5, 6, and 7. The rest
of the students are required to solve the Problems 1-4. The problem numbers with no additional
qualifications refer to problems in the textbook, by Mitzenmacher and Upfal. (b) It is possible that
solutions to some of these problems are available to you via other textbooks, on-line lecture notes,
etc. If you use any such sources, please acknowledge these in your homework with a complete
citation and present your solutions in your own words. You will benefit most from the homework,
if you sincerely attempt each problem on your own first, before seeking other sources. (c) As
mentioned in the syllabus, it is not okay to discuss these problems with your classmates. But, you
are welcome to come and chat with me about the problems. (d) Students who are not Computer
Science Ph.D. students will receive extra credit for submitting correct solutions to any non-empty
subset of Problems 5-7.

1. Problem 4.25

2. For this problem suppose that when we say MAXSAT, we mean the unweighted version of
MAXSAT. Let (xLP , yLP ) be an optimal solution to the MAXSAT LP-relaxation discussed in class.
Suppose we produce a solution to MAXSAT (i.e., a truth assignment to variables x1, x2, . . . , x`)
by using the following simple, deterministic rounding procedure: if xLPi ≥ 1/2 then xRi := 1;
otherwise xRi := 0. Do you think this algorithm yields an α-approximation to MAXSAT, for
some constant α? Justify your answer, either with a proof (or analysis) or with a counterex-
ample.

3. Here is yet another approximation algorithm for (unweighted) MAXSAT.

(a) Suppose the MAXSAT instance is such that all the length-1 clauses (also called “unit
clauses”) only contain variables that are un-negated. Now suppose we set each variable
to 1 with probability p ≥ 1/2 and 0 otherwise. Show that each clause is satisfied
with probability at least min(p, 1 − p2). Hence show that for a suitable value of p, the
expected number of clauses satisfied is at least (

√
5− 1)m/2 ≈ 0.618m, where m is the

total number of clauses.

(b) Now consider a formula without any restriction on the unit clauses. Clearly, we cannot
hope to satisfy more than 50% of the clauses, since the formula might be (x) ∧ (x).
However, show an algorithm that satisfies at least c · OPT of the clauses, where OPT
is the maximum number of clauses that can be satisfied by any assignment and c =
(
√

5− 1)m/2.

4. Derandomize the (1− 1
e )-approximation algorithm for MAXSAT using the method of conditional

expectations. Carefully describe your deterministic algorithm and argue that (i) it produces
an (1− 1

e )-approximation and (ii) it runs in polynomial time.

5. Let G be a
√
n-regular graph (i.e., a graph in which every vertex has degree

√
n). Suppose

that vertices are deleted from G independently with probability 1− 1/(3n1/4).

(a) Use the Lovász Local Lemma to argue that with positive probability, the subset of
vertices that survive, form an independent set.
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(b) Use the Chernoff bound to show that the probability that fewer than n3/4/6 vertices
survive is less than exp(−n3/4/12).

(c) Now consider what happens when you run the random deletion process on an
√
n-regular

graph containing no independent set of size more than
√
n. What does this say about

the positive probability in part (a)?

(This is Problem 5.8 in “Randomized Algorithms” by Motwani and Raghavan.)

6. Let G be a d-regular graph on n vertices.

(a) Show that the number of connected subgraphs of G of size r is at most nd2r.

(b) Suppose that each vertex of G is deleted independently with probability 1− 1
2d2

. Show
that with probability 1 − n−α, there is no surviving connected component of size ex-
ceeding log n, for suitable constant α.

(This is Problem 5.6 in “Randomized Algorithms” by Motwani and Raghavan.)

7. This problem guides you towards derandomizing the randomized rounding algorithm for set
cover. Let Xj be a random variable that indicates whether set Sj has been included in the so-
lution. Let wj be the weight of Sj . Thus W :=

∑
j wjXj is the random variable denoting the

weight of the solution produced by the algorithm. Now let Z be a random variable such that
Z = 1 if randomized rounding does not produce a valid set cover, and Z = 0 if it does. Then
consider applying the method of conditional expectations to the objective function X + λZ
for some choice of λ ≥ 0. Show that for the proper choice of λ, the method of conditional
expectations applied to the randomized rounding algorithm yields an O(lnn)-approximation
algorithm to the set cover problem.
(This is Problem 5.7 in “The design of Approximation Algorithms” by Williamson and
Shmoys.)
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