CS:1210 Project 2

Introduction

As we browse the web, we are constantly being recommended stuff — videos, news articles, books,
movies, music, etc. We have now come to routinely expect recommendations from popular websites
such as Amazon, Netflix, Pandora, youTube, New York Times, etc. These recommendations are
made possible by recommender systems that these websites run. Recommender systems contain a
lot of interesting computer science under the hood and this project aims to give you a glimpse of
this.

A successful recommendation system has to, by some means, be able to predict a user’s tastes
and make recommendations accordingly. Over the years, Netflix has invested a lot of resources
into improving its movie recommender system — some of you may have heard of the Netfliz prize
(http://en.wikipedia.org/wiki/Netflix_Prize). Between 2006 and 2009, Netflix ran a com-
petition, with a prize of one million dollars to the team that could take a given dataset of over
100 million movie ratings and return recommendations that were 10% more accurate than those
offered by the company’s existing recommender system. This competition did a lot to energize the
search for new and more accurate algorithms and better implementations of these algorithms. In
this programming project, you are asked to build a simple recommender system for movies.

One, relatively new approach to coming up with recommendations is called collaborative filtering.
In this approach, recommendations are made on the basis of “collaboration” among many users.
Typically, such a system will collect numeric ratings (e.g., from 1 through 5 with 1 being worst and
5 being best) from users on a collection of items (e.g., movies). To determine what to recommend
for a user “Alice,” the recommender system looks at all users who have tastes similar to Alice’s
tastes and uses the items they have liked as a source of recommendations for Alice. How does the
system figure out who has tastes similar to Alice? It simply uses past ratings to do this — those
users who have rated items in a manner similar to Alice are considered to have tastes similar to
Alice.

For this programming project I provide to you a dataset that contains 100,000 movie ratings.
These are real ratings by real people gathered by the Group Lens research group at the University
of Minnesota (see http://www.grouplens.org/). The dataset is made available with permission
from Group Lens. Here is a nice summary of the data set from the README file accompanying the
data set.

The data was collected through the MovieLens web site (movielens.umn.edu) during the
seven-month period from September 19th, 1997 through April 22nd, 1998. This data
has been cleaned up — users who had less than 20 ratings or did not have complete
demographic information were removed from this data set.

The ultimate goal of your program is to take a user (specified by an ID) and make movie recom-
mendations for this user based on the rating history of this user and all the others in the provided
data set.

Data Files

The dataset is available from the Group Lens page at
http://files.grouplens.org/datasets/movielens/ml1-100k.zip

and consists of a README file along with bunch of other text files. This is a zip file that needs to be
unzipped before you can start using it. I want you to focus on the README file and the following six
data files: u.data, u.info, u.item, u.genre, u.user, and u.occupation. You can ignore the rest
of the text files for this project. The data in all 6 data files is quite clearly explained in the README
file, in the section titled “Detailed Descriptions of Data Files.” So read the README file carefully
first and then look through the data files to get a sense of how they are organized.

Phase 1 (Due on Wednesday, 4/29)

In the first stage of the project (due on Wednesday, 4/29) your program is expected to do the
following three tasks:

(i) read from the given files and store the information in appropriate data structures,
(ii) make rating predictions using four very simple algorithms, and

(iii) evaluate the quality of the predictions.

Creating the data structures

Your program should start by reading the data files and creating five lists — a user list, a movie
list, two ratings list, and a genre list. You will write functions for each of these tasks — these are
described below in detail.

e Write a function with the header:
def createUserList():

that reads from the file u.user and returns a list containing all of the demographic information
pertaining to the users. Suppose I call this function as userList = createUserList(). Then
userList should contain as many elements as there are users and information pertaining to
the user with ID 4 should appear in slot 4 — 1 in userList. Furthermore, each element in
userList should be a dictionary with keys “age”, “gender”, “occupation”, and “zip”. The
values corresponding to these keys should simply be appropriate values read from the file
u.user. For example, the first line in u.user is
1124 |M|technician|85711

and therefore userList [0] should be the dictionary
{"age":24, "gender":"M", "occupation":"technician", "zip":"85711"}

Thus userList is a list with 943 dictionaries, each dictionary containing 4 keys.

e Write a function with the header:
def createMovieList():

that reads from the file u.item and returns a list containing all of the information pertaining

to movies given in the file. Suppose I call this function as movielist = createMovielList().

Then movieList should contain as many elements as there are movies and information per-

taining to the movie with ID ¢ should appear in slot ¢ — 1 in movieList. Furthermore, each

element in movieList should be a dictionary with keys “title”, “release date”, “video

release date”, “IMDB url”, and “genre”. The values corresponding to these keys should

simply be appropriate values read from the file u.item. For example, the first line in u.list

is

1|Toy Story (1995)|01-Jan-1995] |http://us.imdb.com/M/title-exact?Toy%20Story%20(1995) [0l0l0l1|1]1]0l0l0l0lOlOlOlOlIOlOlOlO]O

and therefore movieList [0] should be the dictionary

{"title":"Toy Story (1995)", "release date":"01-Jan-1995", "video release date":"",
"IMDB url":"http://us.imdb.com/M/title-exact?Toy%20Story’%20(1995)",
"genre":[0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]1%}

Note that the value associated with the key “genre” is a length-19 list of zeroes and ones.

e To process the ratings you are required to write two functions. First, you are required to write
a function with header:
def readRatings():

This function reads ratings from the file u.data. Each line in the file contains a user ID, movie
1D, rating, and time stamp. You should ignore the time stamp and read the contents of each
line into a a length-3 tuple of the form (user, movie, rating). The function should return a list
of 100,000 length-3 tuples. For example, the first three tuples in the returned list of ratings
should be

(196, 242, 3), (186, 302, 3), (22, 377, 1)

and this corresponds to the first three lines of the file u.data which are:

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116

Second, you are required to write a function with the header:
def createRatingsDataStructure(numUsers, numItems, ratingTuples):

that takes the rating tuple list constructed by readRatings and organizes the tuples in this list
into two data structures. The function takes as parameters the number of users (numUsers),
the number of movies (numMovies), and a list of rating tuples of the form (user, movie, rating).
Suppose I call this function as [rLu, rLm] = createRatingsList(numUsers, numMovies,
ratingTuples). Then rLu is a list, with one element per user, of all the ratings provided by
each user. Similarly, rLm is a list, with one element per movie, of all the ratings received by
each movie. In particular, the ratings provided by user with ID ¢ should appear in slot i — 1
in rLu and the ratings received by movie with ID ¢ should appear in slot ¢ — 1 in rLm. We
explain rLu a little bit more; rLm is quite similar. The ratings, by a particular user, appear
as a dictionary whose keys are IDs of movies that this user has rated and whose values are
corresponding ratings. For example, the user with ID 1 has rated movie 61 and given it the
rating 4. Hence the key-value pair 61:4 should appear in rLu[0]. In rLm, the ratings received
by a movie appear as a dictionary whose keys are IDs of users who have rated that movie.

e Write a function with the header:
def createGenrelList():

that reads from the file u.genre and returns the list of movie genres listed in the file. The
genres should appear in the order in which they are listed in the file.

After creating these data structures you are required to write two functions to answer simple queries
about the data you’ve processed.

e The function meanUserRating (see header below) should return the mean rating provided by
user with given ID u. The second argument is the ratings data structure from the user’s point
of view created by the function createRatingsDataStructure.

def meanUserRating(u, rLu):

e The function meanMovieRating (see header below) should return the mean rating for a movie
with given ID im. The second argument is the ratings data structure from the movie’s point
of view created by the function createRatingsDataStructure.

def meanMovieRating(m, rLm):

Simple prediction algorithms

Now that we’ve processed and stored the given data we can turn our attention to the task of
predicting ratings. The general idea is that you are given a user u and a movie m that u has not
rated. Your goal is to predict a rating between 1 and 5 that user u would give movie m. This rating
need not be an integer — it could be 3.5, for example. To come up with a prediction for the rating,
you would use the data on past rating history that you have access to.

Here are 4 extremely simple prediction algorithms that you will implement for Phase 1 of the
project. In Phase 2, you’ll implement a more sophisticated prediction algorithm based on collabo-
rative filtering.

1. Algorithm randomPrediction: Given a user u and a movie m, simply return a random integer
rating in the range [1,5]. Use the following header for this function.
def randomPrediction(u, m):

2. Algorithm meanUserRatingPrediction: Given a user u and a movie m, simply return the
mean rating that user u has given to movies. Use the following function header.
def meanUserRatingPrediction(u, m, userRatings):

Here userRatings the data structure of movie ratings organized by user. In other words,
userRatings is a list with one element per user, each element being a dictionary containing
all movie-rating pairs associated with that user. (See the description of createDataStructure
for more details.)

3. Algorithm meanMovieRatingPrediction: Given a user u and a movie m, simply return the
mean rating that movie m has received. Use the following function header.
def meanMovieRatingPrediction(u, m, movieRatings):

Here movieRatings is the data structure of movie ratings organized by movies. In other words,
movieRatings is a list with one element per movie, each element being a dictionary containing
all user-rating pairs associated with that user. (See the description of createDataStructure
for more details.)

4. Algorithm meanRatingPrediction: Given a user u and a movie m, simply return the average
of the mean rating that u gives and mean rating that m receives.
def meanRatingPrediction (u, m, userRatings, movieRatings):

Here userRatings and movieRatings are as described above.

Evaluating the Prediction Algorithm

People who design recommendation algorithms also think a lot about how their algorithms should
be evaluated. One standard approach is called cross-validation. The main idea here is that we take
a fraction of the rating data, say 20%, and call it our testing set. The remaining 80% of the rating
data will form our training set. We will then “train” our prediction algorithm on our training set
and test it on our testing set. More specifically, we will “hide” our testing set and come up with
predicted ratings based on our training set alone. We will then walk through our testing set, come
up with a predicted rating for every item in the testing set and compare the predicted rating with
the actual rating. Here are more details of this process. An item in the testing set will have the
form (u, m,r), where u is a user, m is a movie, and r is the actual rating that user u has assigned
to movie m. Suppose that we momentarily hide the rating r» and use one of the rating prediction
algorithms described above to come up with a predicted rating, say r’, by user u for movie m.
Note that the predicted rating 7’ is based on the training set alone. How well our algorithm does
depends on how close the predicted rating 7’ is to the actual user rating, r. We will do this for the
entire testing set and output a measure of how far our predicted ratings are compared to the actual
ratings. Several different measures are used for this; one common measure is the root mean squared
error (RMSE) defined as

Here r; and r} are the actual and predicted rating of the i-th element in the testing set and 7 is the
total number of elements in the testing set. Thus, RMSE is computed by first taking the mean of
the squares of differences between actual and predicted ratings and then taking the square root of
this quantity.

Here are two functions you are required to implement in order to implement the evaluation
process described above.

e A function partitionRatings with header
def partitionRatings(rawRatings, testPercent):

that partitions ratings into a training set and a testing set. This function takes a list of raw
ratings in the form of (user, movie, rating)-tuples. In addition it takes the percentage of the
raw ratings that should be placed in the testing set of ratings. For example, the percentage
could be 20%. The testing set is obtained by randomly selecting the given percent of the raw
ratings. The remaining unselected ratings are returned as the training set. The testing set is
a list with each element having the form (user, movie, rating). The training set has a similar
form. It is expected that the user will call this function as
[trainingSet, testSet] = partitionRatings(rawRatings, testPercent)

e A function rmse with header:
def rmse(actualRatings, predictedRatings):

that computes the RMSE given lists of actual and predicted ratings.

Putting everything together

You are required to submit two files: project2Phasela.py and project2Phaselb.py. The first file,
project2Phasela.py should contain the implementation of all of the functions mentioned above,
but no main program. The graders will run this file through a bunch of tests (as in Project 1, we
will provide our test file to you) in order to evaluate the functions.

The second file project2Phaselb.py should contain a main program as well. This file should
contain a program that evaluates each of the 4 simple prediction algorithms mentioned above by
using an 80-20 split of the ratings into training and testing sets. The output of this program should
approximately look like:

Random prediction RMSE: 1.8688231591

User Mean Rating prediction RMSE: 1.04495612875

Movie Mean Rating prediction RMSE: 1.02292075141
User-Movie Mean Rating prediction RMSE: 0.981469630708

This is the actual output of one execution of my program. This is essentially saying that the random
prediction is almost two “stars” off relative to the actual ratings, whereas the other algorithms are
about one “star” off. Also noteworthy is that taking the average of the mean user rating and the
mean movie rating seems to improve the prediction a little bit. In Phase 2, we will implement a
more sophisticated algorithm and figure out whether this improves the RMSE in any significant
manner.

Phase 2 (Due on Thursday, 5/7)

In this phase you are required to implement an algorithm that predicts ratings of a given user ¢ by
taking into account ratings of users whose tastes are similar to ¢’s tastes. The algorithm largely
depends on the following definitions.

Definition of similarity. The similarity between two users ¢ and j is defined as:

PR > omec(Tim = 13) (Tjm — 1)
sim(i,j) = > .
V2mecTim —11)% /X mec(Tim —15)
Here C' is the set of movies that both ¢ and j have rated, r; ,, is user ¢’s rating of movie m, r; ,
is user j’s rating of movie m, and r; is user i’s mean rating and r; is user j’s mean rating. This

definition guarantees that sim(i,j) will always be between -1 and +1. Some of you may know this
formula as the Pearson correlation coefficient and may also recognize the two terms that appear in
the denominator as standard deviations. This definition of sim(i,j) views the “similarity” of users
¢ and j as a correlation between their ratings. If it turns out that user ¢ and j have similar tastes
and they have both rated common movies in a similar manner, then sim(i, j) will be close to 1; on
the other hand if their tastes are “opposite” then sim(i,j) will be closer to -1.

Note that if C' is empty then it means that we have no basis for figuring out the correlation between
users ¢ and j and in this case we assume that ¢ and j are uncorrelated and set sim(i,j) to be 0.
Also, if the denominator in the above expression is 0, it means that the numerator will also be 0
(convince yourself of this) and in this case also we set sim(s, j) to 0.

Predicting ratings via collaborative filtering. Once similarity between users is defined as
above, we can predict the rating that a user ¢ gives to a movie m by taking the “weighted” average
of ratings that movie m has received from users who are similar to i. Specifically, for a user ¢ and
a movie m, define the predicted rating of movie m by user 7 as:

EjeU(Tj,m - Tj)) SZT)’L(Z,])

Z_jeU |sim(i, j)|

pi,m) = ri + (1)
Here U is the set of users that have rated movie m and are very similar to i. For example, let N (i, k)
be the k users that are most similar to ¢ (using the similarity measure defined earlier). Think of
N(i, k) as user ¢’s k best “friends,” namely those k users whose tastes in movies is closest to i’s
tastes. Then, for an appropriately chosen positive constant k, U might be the subset of users in
N(i, k) that have rated movie m.

The following might help you gain some intuition into what the above formula is saying. The
formula starts with r;, which is user’s ¢’s mean movie rating. It then and increases this value if
other users who are similar to ¢ have rated m highly; otherwise, if other similar users have rated m
poorly, r; is decreased in order to obtain a predicted rating. Also note that the term in the formula
corresponding to a user j is weighted by sim(i, j) implying that the more similar j is to ¢, the more
“weight” j’s rating gets in the prediction.

Functions you need to define. You are required to implement the above definitions via the
following functions.

e A function called similarity with the following function header:
def similarity(u, v, userRatings):

that takes the IDs of two users, u and v, and the ratings list (containing a ratings-dictionary
per user). This function computes the similarity in ratings between the two users, using the
movies that the two users have commonly rated. It might help you understand the context
for this function to note that we expect userRatings to be derived from the training set.

e A function called kNearestNeighbors with function header:
def kNearestNeighbors(u, userRatings, k):

This function returns the list of (user ID, similarity)-pairs for the k users who are most similar
to user u. The user u herself should be excluded from candidates being considered by this
function. Ties can be broken arbitrarily. (For example, if £ = 1 and there are two users v and
w who are most similar to u and both have similarity 0.9, then it does not matter whether
your function returns [(v, 0.9)] or [(w, 0.9)]).

e A function called CFRatingPrediction with the following function header:
def CFRatingPrediction(u, m, userRatings, friends):

This function predicts a rating by user u for movie m. It uses the ratings of the list of
friends (the 4th parameter) to come up with a rating by u of m according to formula (1).

Typically the argument corresponding to friends would have been computed by a call to the
kNearestNeighbors function. Here, as usual, userRatings is the list of movie ratings that
contains one ratings-dictionary per user.

e A function called CFMMRatingPrediction with the following function header:
def CFMMRatingPrediction(u, m, userRatings, movieRatings, friends):

This function is very similar to CFRatingPrediction. To come up with a rating, the function
computes a number using the formula in (1) and then returns the average of this and mean
rating of movie m.

Once the function collaborativeFilteringRatingPrediction has been implemented, you can
perform experiments to compare the performance of collaborative filtering with the simpler predic-
tion algorithms you implemented for Phase 1.

Experiments

To compare the algorithms implemented in the two phases, write a main program (similar to Phase
1 main program) that appropriately reads from files, sets up data structures, creates the testing and
training data sets, and evaluates all of the prediction algorithms.

Note that the performance of the collaborative filtering algorithm may depend on the number of
“friends” used. So I would like you to run the algorithms CFRatingPrediction and CFMMRatingPrediction
with 0 friends, 25 friends, 300 friends, 500 friends, and the friends consisting of the entire population
of users. This gives 5 variants of each of the collaborative-filtering-based algorithms for a total of
10 algorithms. Your main program should evaluate the 4 algorithms implemented in Phase 1 and
the 10 algorithms implemented in Phase 2.

As before, the evaluation will simply be via rmse scores. To make sure that the reported rmse
values are reliable, your program should perform 10 repetitions of the above process, by generating
10 different 80-20 splits of the data into training and testing sets, computing the rmse values of all
of the prediction algorithms and then reporting the average rmse value of each prediction algorithm
(averaged over the 10 repetitions).

The output from your main program should be informative, but not overly verbose. Note that
your program will be reporting 14 numbers with simple accompanying messages.

What to turn in?

You are required to submit three program files: project2Phase2a.py, project2Phase2b.py, and
project2Phase2b0neRun.py. The first file, project2Phase2a.py should contain the implementa-
tion of all of the functions mentioned above, but no main program. The graders will run this file
through a bunch of tests (as in Project 1, we will provide our test file to you) in order to evaluate the
functions. The second file project2Phase2b.py should contain a main program that performs the
experiments described above. The third program file, project2Phase2b0neRun.py, is very similar
to project2Phase2b.py, except that it contains code for just one run instead of 10 runs. Finally,
you are required to submit a file called output.txt. This file is a simple text file containing the
output produced by your program project2Phase2b.py.

Cautionary Note
Phase 2 is somewhat computationally intensive and so unless you are a bit thoughtful about your

implementation, it is possible that it will take too much time to perform the experiments. Keep
this in mind as your implementing Phase 2.

Extra Credit

As you may have noticed, we’ve only scratched the surface as far as building a good recommender
system is concerned. The data set we are working with contains a lot of relevant information that
we’ve ignored. We have also been somewhat simple-minded in a number of choices we’ve made. For
example, algorithms meanRatingPrediction and CFMMRating compute the simple average of two
different scores. It is possible that weighting this scores differently (e.g., using a formula such as
0.7 % x1 + 0.3 x 25) might lead to better predictions. You’ll receive up to 20 points extra credit if
(i) you implement an algorithm that consistently improves the best rmse score from the algorithms
described in this handout and (ii) briefly describe what you did and what output you got in 2-
3 paragraphs. You’ll need to submit two files: project2EC.py and project2ECWriteUp.pdf to
receive any extra credit.

