
CS:1210 Practice Problem Set 4
Complete before Tuesday, Feb 17th

1. Without executing this program on a computer, figure out what output it produces.

n = 1

while n < 6:

m = n

line = ""

while m > 1:

if m % 2 == 0:

m = m/2

else:

line = line + str(m) + " "

m = 3*m + 1

line = line + str(1)

print line

n = n + 2

2. Write down the boolean value that each of these expressions evaluates to. For expressions
containing the variable x, assume that the value of x is 13.

(a) (10 != 200) and (True)

(b) (not (x < 15)) or (x > 10)

(c) not(not(x != 13))

(d) (10 < 20) and ((20 < 30) or (20 != 20))

(e) (x == 10) or ((x < 10) or (not (x > 20)))

(f) abs(5 - 25) < 15

(g) (int(len("hello")/3.0) == 1) and (not(len("hi") >= 2))

(h) not(not(not False)) or (False or True)

(i) (5 < 10) and ((10 < 5) or ((3 < 18) and not (8 < 18)))

(j) (not (5 < 10)) or (not (3 != 4) and not (8 > 11))

3. Look up the meaning of the following functions defined in the math module. You can find
documentation for the math module at https://docs.python.org/3/library/math.html
and after reading the documentation, you should also try playing with these in the Python
shell.

• ceil(x)

• factorial(x)

• floor(x)

• trunc(x)

• pow(x, y)

1

Now we want you to be able to evaluate the following expressions away from the computer.
Write down the value and type of each expression.

(a) math.ceil(5.75) - math.floor(5.75)

(b) math.ceil(5) - math.floor(5.0)

(c) math.trunc(10.5)/3

(d) math.pow(2, 3) - math.pow(3, 2)

(e) math.factorial(5)/10

(f) math.ceil(math.sqrt(20))

(g) math.floor(math.log10(50))

4. Start with the code we wrote to solve the primality testing problem and turn this into a
boolean function called isPrime takes a positive integer as an argument and returns True
if the argument is a prime; False otherwise.

5. Write a function called numPrimes that takes a nonnegative integer argument, say N , and
returns the number of primes less than or equal to N . Your function should repeatedly
call the function isPrime (see previous problem).

6. Write a function called isPerfectSquare that takes a nonnegative integer as an argument
and returns True if the argument is a perfect square and False otherwise. Thus the function
call isPerfectSquare(100) should return True and the function call isPerfectSquare(60)
should return False.

There are two more problems in the following pages.

2

7. Here is a partially completed program that repeatedly prompts the user for a positive
integer and outputs all the factors of that integer. The program repeats this until the user
types done. The program outputs the factors of each given positive integer in one line.
Here is an example interaction between the program and the user. The user enters the
positive integers 22, 31, and 64 followed by done.

Enter a positive integer: 22

Factors: 1 2 11 22

Enter a positive integer: 31

Factors: 1 31

Enter a positive integer: 64

Factors: 1 2 4 8 16 32 64

Enter a positive integer: done

The program below has two blanks that need to be filled.

repeat until user types "done"

while True:

inputString = input("Enter a positive integer: ")

Check if inputString is done and if so break out of loop

if _______________________:

break

This part of the code processes a positive integer

n = int(inputString)

factor = 1 # tracks potential factors of n

The string variable outputString is used to construct

the line of output with all factors of n

outputString = "Factors: "

loop through all potential factors

while factor <= n:

if n % factor == 0:

Update the outputString

__

factor = factor + 1

print(outputString)

3

8. Here is a partially completed program that aims to solve the following problem. The user
types in a sequence of positive integers, one per line, ending with the number 0. The
program reads in this sequence and counts and outputs the number of pairs of consecutive
numbers that are in increasing order. An example interaction of this program with the
user is given below.

Type a positive int (zero if done) 20

Type a positive int (zero if done) 23

Type a positive int (zero if done) 25

Type a positive int (zero if done) 20

Type a positive int (zero if done) 19

Type a positive int (zero if done) 9

Type a positive int (zero if done) 10

Type a positive int (zero if done) 0

3

The program outputs 3 because it detects three pairs of consecutive numbers in increasing
order: (i) 20, 23, (ii) 23, 25, and (iii) 9, 10. The program below has two blanks to fill.
Your task is to fill in these blanks.

Variable used to read input numbers

current = int(input("Type a positive int (zero if done)."))

tracks the number just prior to the most recently read number

previous = current

counter to track the number of consecutive, increasing pairs

numIncreasingPairs = 0

while current != 0:

if current > previous:

numIncreasingPairs = numIncreasingPairs + 1

Update previous (Blank 1)

Update current (Blank 2)

print(numIncreasingPairs)

4

