
CS:1210 Practice Problem Set 13
Complete before Tuesday, 5-5-2015

1. The greatest common divisor (gcd) of two positive integers x and y can be computed using
the very old Euclid’s algorithm. Euclid’s algorithm is based on the principle that the gcd
of two numbers does not change if the larger number is replaced by the remainder obtained
by dividing the larger number by the smaller number. In other words,

gcd(21, 35) = gcd(21, 14) = gcd(7, 14) = 7.

Implement this algorithm as a recursive function with the function header:
def gcd(a, b):

Pay close attention to the base case(s).

2. Implement a class called rational for representing rational numbers. This class should
contain two functions: init and repr and I’d like to use this class as follows:

>>> r = rational(10, 15)

>>> r

2/3

>>> print(r)

2/3

>>> p = rational(11, 7)

>>> p

11/7

p.denominator

7

p.numerator

11

As you can see from the above example, the numerator and denominator of the rational
are stored in reduced form (i.e., after reduction by the gcd). Functions in your rational

class can call the gcd function implemented in the previous problem.

3. We want to define a class called employeeInfo that a company uses to maintain a collection
of employee records. Each employee record contains a name, a social security number, a
salary, and an employment start date. In addition to an initialization method (init)
and a representation method (repr), the class provides an add method for adding an
employee record to the collection and a remove method for deleting an employee record.
Here is an example of how a user might interact with the employeeInfo class:

>>> emp = employeeInfo()

>>> emp.add("Isaac Newton", 31415926, 1000000, "05152013")

>>> emp.add("Robert Boyle", 15793861, 5000000, "11152010")

>>> emp

Robert Boyle 15793861 5000000 11152010

Isaac Newton 31415926 1000000 05152013

>>> emp.add("Robert Hooke", 53589793, 200000, "04152012")

>>> emp

Robert Boyle 15793861 5000000 11152010

Isaac Newton 31415926 1000000 05152013

Robert Hooke 53589793 200000 04152012

>>> emp.remove(31415926)

1

>>> emp

Robert Boyle 15793861 5000000 11152010

Robert Hooke 53589793 200000 04152012

We assume that employees have distinct social security numbers and no employee appears
twice in the collection of employee records. Therefore, we can use a dictionary-based
implementation with the social security numbers acting as keys. Below we provide imple-
mentation of the initialization method and the add method:

class employeeInfo():

def __init__(self):

self.D = {}

def add(self, name, ssn, salary, start):

self.D[ssn] = [name, salary, start]

(a) Implement the remove method.
(Hint: This just takes two lines of code including the function header.)

(b) Implement the repr method. Recall that the repr method is required to return
a string. The examples above of interacting with the employeeInfo class tell us that
the string returned by repr contains information about each employee separated
by the end-of-line character. Also, each employee’s information contains the em-
ployee’s name, employee’s social security number, employee’s salary, and employee’s
starting date, in that order, separated by a single blank character. Finally, note that
the employee information appears in increasing order of social security numbers.

(c) Now suppose that we change the implementation of the employeeInfo class, without
changing how it behaves to an outside user. Specifically, instead of using a dictionary
to store the collection of employee records, we will use a list. Below we provide part of
the new implementation, namely the initialization method and the repr method:

class employeeInfo():

def __init__(self):

self.L = []

def __repr__(self):

s = ""

for x in self.L:

s = s+str(x[0])+" "+str(x[1])+" "+str(x[2])+" "+str(x[3])+"\n"

return s.strip()

Your task for this problem is to implement the add method.
(Hint: The implementation of the repr shown above contains many clues about
how the list of employee records is organized.)

2

