
M A Y 4 T H , 2 0 1 5

The queue class

Remember searchWordNetwork

def searchWordNetwork(source, target, D):

 processed = {source:0}
 reached = {}
 for e in D[source]:
 reached[e] = source # the value in the dictionary of a key k is the "parent" of k

 # Repeat until reached set becomes empty or target is reached
 while reached:
 # Check if target is in reached; this would imply there is path from source to target
 if target in reached:
 processed.update({target:reached[target]})
 return processed

 # Pick an item in reached and process it
 item = reached.popitem() # returns an arbitrary key-value pair as a tuple
 newWord = item[0]
 parent = item[1]

 # Find all neighbors of this item and add new neighbors to reached
 processed[newWord] = parent
 for neighbor in D[newWord]:
 if neighbor not in reached and neighbor not in processed:
 reached[neighbor] = newWord

 return {}

The fact that popItem
returns an arbitrary node
makes this function return
arbitrarily long paths from
source to target.

How to get shortest paths?

�  If we pull out the “oldest” item from reached, we will
be guaranteed to get a shortest path.

�  Nodes are inserted into reached in some order – the
order in which they are reached by the exploration
algorithm. So we have a notion of how long each
item has been in reached.

�  The network exploration algorithm with this feature
is called breadth-first search.

A new data structure

�  So we need a data structure that maintains a collection of items and
supports the following operations:
¡  enqueue: inserts the given item into the data structure
¡  dequeue: deletes from the data structure the element that was inserted earliest and returns

this element.

Example:
>>> Q = queue()
>>> Q.enqueue(10)
>>> Q.enqueue(20)
>>> Q.enqueue(11)
>>> Q.dequeue()
10
>>> Q.enqueue(10)
>>> Q.dequeue()
20

“FIFO” data structure

�  This is called a First-in First-out (FIFO) data structure.
Also called a queue data structure.

�  How to implement this data structure?

�  We’ll discuss a list-based implementation and a
dictionary-based implementation.

�  GOAL: To ensure that both operations (enqueue and
dequeue) run in constant number of rounds,
independent of the length of the queue.

List-based implementation

�  Idea:

¡  When a new element arrives, append it to the (back of the) list

¡  This means that the oldest elements are at the front and
newest elements at the back.

¡  So we delete (dequeue) elements from the front

Implementation

class queue():

 # Constructs an empty queue
 def __init__(self):
 self.L = []

 # Enqueue appends items at back of list
 def enqueue(self, item):
 self.L.append(item)

 # Dequeue removes items from front of list. This method is not efficient
 def dequeue(self):
 item = self.L.pop(0)
 return item

 # Shows the queue as a list
 def __repr__(self):
 return str(self.L)

A more efficient list-based implenentation

�  Let us keep an index called start that will always
point to the first (earliest) element in the list.

�  So we do not explicitly remove elements from the list
in response to dequeue; instead we simply move
start.

�  Now both enqueue and dequeue are quite efficient.

Implementation

class queue():

 # Constructs an empty queue
 def __init__(self):
 self.L = []
 self.start = -1 # initialize start to point to before the first valid index

 # Enqueue appends items at back of list
 def enqueue(self, item):
 self.L.append(item)
 # If the queue was empty prior to this insertion, update start
 if self.start == -1:
 self.start = self.start + 1

 # Dequeue removes items from front of list. This method is not efficient
 def dequeue(self):
 self.start = self.start + 1
 item = self.L[self.start - 1]
 return item

 # Shows the queue as a list
 def __repr__(self):
 return str(self.L[self.start:])

 # Queue is empty is there if the list if physically empty
 # or start points to the end of the list
 def isEmpty(self):
 return len(self.L) == 0 or self.start == len(self.L)

But wait…

�  …even this implementation has a problem.

�  We may have a very large self.L even though the
queue may have very few elements.

�  Thus we have traded off space (memore) for time
(speed).

