
M A R C H 9 T H , 2 0 1 5

Binary Search

The Search Problem

�  One of the most common computational problems
(along with sorting) is searching.

�  In its simplest form, the input to the search problem
is a list L and an item k and we are asked if k belongs
to L. (The in operator in Python.)

�  In a common variant, we might be asked for the
index of k in L, if k does belong to L. (The L.index()
method in Python.)

Searching lists

�  Python provides several built-in operations for
searching lists:
¡  elem in L: evaluates to True if elem is in list L
¡  L.index(elem): returns the index of the first occurrence of elem

in L; is an error if elem is not in L.
¡  L.count(elem): returns the number of occurrences of elem in L.

�  Other related operations:
¡  min(L), max(L): these return the minimum element and

maximum element respectively of L.

Linear Search

�  If we don’t know anything about L, then the only way to solve the
problem is by scanning the list L completely in some systematic
manner.

�  This takes time proportional to the size of the list, in the worst case.

�  And for this reason, this is called linear search.

�  Linear search can be quite inefficient for many applications because
search is such a common operation in programs.

�  The Python search operations mentioned in the previous slide all
perform linear search because they are expected to work on any list.

Binary Search

�  If the list L is known to be sorted (in ascending or
descending order), then we can use a much more
efficient algorithm called binary search.

�  Binary search is so much more efficient than linear
search that it provides a significant incentive to keep
lists sorted.

�  More on the efficiency of binary search later.

Binary Search Algorithm

�  Suppose that L is sorted in ascending order.
�  Compare k with the middle element of L.

¡  If k == L[middle], we are done
¡  If k < L[middle], we need to search the first half of L
¡  If k > L[middle], we need to search the second half of L

�  Notice that after one comparison, the size of the
problem shrinks to 1⁄2 of what it was earlier.

�  (Compare this with linear search where after one
comparison, the problem size reduced by just 1
element.)

Binary Search Alorithm (more details)

�  Explicitly maintain two indices left and right.
�  The sublist L[left..right] (inclusive) is what still

remains to be searched.
�  Initially, left is 0 and right is len(L)-1.
�  Since we are interested in comparing k with the

“middle” element, we maintain a third index called
mid (set to (left + right)/2).

�  After one comparison, either we find k or we look for
it in the left half (right = mid -1) or in the right half
(left = mid + 1).

The function binarySearch

def binarySearch(L, k):
 left = 0
 right = len(L)-1

 # iterate while there is a sublist that needs to be searched
 while left <= right:
 mid = (left + right)/2 # index of the middle element

 # Comparisons and then adjusting the boundaries of
 # the sublist, if necessary
 if L[mid] == k:
 return mid # element is found at mid, so return this index
 elif L[mid] < k: # look for element in right half
 left = mid + 1
 elif L[mid] > k: # look for element in the left half
 right = mid -1

 return -1 # element is not found in the list

Execution Examples

binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 65)
Slices searched:

 0 7
 4 7
 6 7
 7 7
 Not found

binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 4)
Slices searched:

 0 7
 0 2
 Found

Worst Case Running Time

�  Assume the worst case, i.e., we don’t find k.
�  After each comparison of k with L[mid] the problem size

shrinks to ½ of what it was before the current iteration.

 Problem Size Number Iterations Completed
 N 0
 N/2 1
 N/22 2
 N/23 3

Worst Case Running Time (contd.)

�  Thus after t iterations have been completed, the
problem size has shrunk to N/2t.

�  Therefore, for the problem size to shrink to 1, we
need

 N = 2t

 t = log2 N

�  Thus the worst case running time of binary search is
logarithmic in the size of the list.

Example that shows the speed of Binary Search

�  Problem: If we sample N times uniformly at
random from the integers {1, 2, 3,…, N}, how many
distinct elements will we get?

�  Statisticians are interested in these kinds of
questions.

�  It is easy to write a simple Python program to get a
sense of this.

Code using slow search

import random

L = []
for i in range(50000):
 L.append(random.randint(1,50000))

count = 0
for e in range(1, 50001):
 if e in L:
 count = count + 1

print count

Output

Time to build list is 0.129420042038
31733
Time to count distinct elements is 45.7874200344

Faster Code using Binary Search

import random
from binarySearch import *

L = []
for i in range(50000):
 L.append(random.randint(1,50000))

L.sort()

count = 0
for e in range(1, 50001):
 if binarySearch(L, e) >= 0:
 count = count + 1

Output

Time to build list is 0.125706195831
Time to sort list is 0.0273258686066
31717
Time to count distinct elements is 0.3523209095

