Binary Search
The Search Problem

- One of the most common computational problems (along with sorting) is searching.

- In its simplest form, the input to the search problem is a list L and an item k and we are asked if k belongs to L. (The in operator in Python.)

- In a common variant, we might be asked for the index of k in L, if k does belong to L. (The $L.index()$ method in Python.)
Searching lists

- Python provides several built-in operations for searching lists:
 - `elem in L`: evaluates to True if `elem` is in list `L`
 - `L.index(elem)`: returns the index of the first occurrence of `elem` in `L`; is an error if `elem` is not in `L`.
 - `L.count(elem)`: returns the number of occurrences of `elem` in `L`.

- Other related operations:
 - `min(L), max(L)`: these return the minimum element and maximum element respectively of `L`.
Linear Search

- If we don’t know anything about L, then the only way to solve the problem is by scanning the list L completely in some systematic manner.

- This takes time proportional to the size of the list, in the worst case.

- And for this reason, this is called linear search.

- Linear search can be quite inefficient for many applications because search is such a common operation in programs.

- The Python search operations mentioned in the previous slide all perform linear search because they are expected to work on any list.
If the list L is known to be *sorted* (in ascending or descending order), then we can use a much more efficient algorithm called *binary search*.

Binary search is so much more efficient than linear search that it provides a significant incentive to keep lists sorted.

More on the efficiency of binary search later.
Binary Search Algorithm

- Suppose that L is sorted in ascending order.
- Compare k with the middle element of L.
 - If k == L[middle], we are done
 - If k < L[middle], we need to search the first half of L
 - If k > L[middle], we need to search the second half of L
- Notice that after one comparison, the size of the problem shrinks to 1/2 of what it was earlier.
- (Compare this with linear search where after one comparison, the problem size reduced by just 1 element.)
Explicitly maintain two indices left and right.
The sublist L[left..right] (inclusive) is what still remains to be searched.
Initially, left is 0 and right is \text{len}(L)-1.
Since we are interested in comparing k with the “middle” element, we maintain a third index called mid (set to (left + right)/2).
After one comparison, either we find k or we look for it in the left half (right = mid - 1) or in the right half (left = mid + 1).
The function binarySearch

```python
def binarySearch(L, k):
    left = 0
    right = len(L)-1

    # iterate while there is a sublist that needs to be searched
    while left <= right:
        mid = (left + right)/2 # index of the middle element

        # Comparisons and then adjusting the boundaries of
        # the sublist, if necessary
        if L[mid] == k:
            return mid # element is found at mid, so return this index
        elif L[mid] < k: # look for element in right half
            left = mid + 1
        elif L[mid] > k: # look for element in the left half
            right = mid -1

    return -1 # element is not found in the list
```
binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 65)
Slices searched:
 0 7
 4 7
 6 7
 7 7
 Not found

binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 4)
Slices searched:
 0 7
 0 2
 Found
Worst Case Running Time

- Assume the worst case, i.e., we don’t find \(k \).
- After each comparison of \(k \) with \(L[\text{mid}] \) the problem size shrinks to \(\frac{1}{2} \) of what it was before the current iteration.

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>Number Iterations Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>0</td>
</tr>
<tr>
<td>(N/2)</td>
<td>1</td>
</tr>
<tr>
<td>(N/2^2)</td>
<td>2</td>
</tr>
<tr>
<td>(N/2^3)</td>
<td>3</td>
</tr>
</tbody>
</table>
Thus after t iterations have been completed, the problem size has shrunk to $N/2^t$.

Therefore, for the problem size to shrink to 1, we need

$$N = 2^t$$

$$t = \log_2 N$$

Thus the worst case running time of binary search is logarithmic in the size of the list.
Example that shows the speed of Binary Search

- **Problem:** If we sample N times uniformly at random from the integers \{1, 2, 3, ..., N\}, how many distinct elements will we get?

- Statisticians are interested in these kinds of questions.

- It is easy to write a simple Python program to get a sense of this.
import random

L = []
for i in range(50000):
 L.append(random.randint(1,50000))

count = 0
for e in range(1, 50001):
 if e in L:
 count = count + 1

print count
Time to build list is 0.129420042038
31733
Time to count distinct elements is 45.7874200344
import random
from binarySearch import *

L = []
for i in range(50000):
 L.append(random.randint(1, 50000))

L.sort()

count = 0
for e in range(1, 50001):
 if binarySearch(L, e) >= 0:
 count = count + 1
Output

Time to build list is 0.125706195831
Time to sort list is 0.0273258686066
31717
Time to count distinct elements is 0.3523209095