
M A R C H 3 0 T H , 2 0 1 5

The Word Ladders Game

The Word Ladders Game

�  This is a word game invented by Lewis Carroll in
1877.

�  You are given two words on the same length, e.g.,
“cold” and “warm.”

�  Your task is to find a chain of words from the starting
word (“cold”) to the ending word (“warm”) so that
each successive word differs from the previous in
exactly one letter.

�  Example: “cold”, “cord”, “card”, “ward”, “warm.”

The 5-letter version

�  Donald Knuth, a Turing award winning computer
scientist created a file of 5,757 5-letter words. These
were all valid 5-letter English words at the time at
which the file was created.

�  I have posted this file: words.dat

�  Our problem is to write a program that reads two 5-
letter words and plays the word ladders game.

Example Run

Enter the first five-letter word for the Ladders game (0 to quit): about
Enter the second five-letter word for the Ladders game (0 to quit): house
Here is the word chain from about to house:
about
abort
aport
sport
spurt
spurs
sours
tours
touts
routs
route
rouse
house

High-level Plan

�  Step 1:
¡  We will build a word network. This is the collection of 5-letter words

with pairs of words that differ in exactly letter, connected by an
“edge.”

�  Step 2:
¡  Given a pair of words word1 and word2, we will “explore” the word

network, starting at word1 and try to find a path in the network from
word1 to word2.

�  We will work on Step 2 later. We will first solve Step 1 in
a couple of ways. First using lists and then using
dictionaries.

Word Network Examples

�  The word “house” is connected by an edge to each of
these seven 5-letter words:
¡  douse, horse, louse, mouse, rouse, souse, youse.

�  The word “fails” is connected by an edge to each of
these fourteen 5-letter words:
¡  bails, fairs, falls, foils, hails, jails, mails, nails, pails, rails,

sails, tails, vails, wails.

Building the Word Network: More Details

1.  We will write a boolean function called
areNeighbors that takes two words and
determines if they are “neighbors” (i.e., differ in
exactly one letter).

2.  We will write code to read from the file of 5-letter
words (called words.dat) and store the words in a
word list.

3.  We will then build the word network.

Building the Word Network: More Details

�  We will use a list called wordList to store the list of words (in the
order in which we read them from words.dat).

�  We will create an additional data structure – a list of lists, called
neighborsList such that if a word w occurs in wordList in
position i then all its neighbors are stored as a list, in position i,
in neighborsList.

�  For example, “fails” appears in position 1,622 in wordList. So
neighborsList[1622] equals ['bails', 'fairs', 'falls', 'foils',
'hails', 'jails', 'mails', 'nails', 'pails', 'rails', 'sails', 'tails',
'vails', 'wails']

The function areNeighbors

Two words are neighbors if they differ in exactly on letter.
This function returns True if a given pair of words are neighbors
It is assumed that the two words have the same length.
def areNeighbors(w1, w2):
 count = 0
 for i in range(len(w1)):
 if w1[i] != w2[i]:
 count = count + 1

 return count == 1

Building wordList

Main program
fin = open("words.dat", "r")

Loop to read words from the and to insert them in a
list
wordList = []
for word in fin:
 newWord = word.strip("\n")
 wordList.append(newWord)

fin.close()

Building neighborsList

neighborList = [[nbr
 for nbr in wordList if areNeighbors(word, nbr)
]
 for word in wordList
]

