1. Recall our algorithm (described below in pseudocode) for computing the binary equivalent of a given nonnegative integer.
 (i) Read the number n given as input.
 (ii) If n is even, output 0. Replace n by $n/2$.
 (iii) If n is odd, output 1. Replace n by $(n - 1)/2$.
 (iv) If n is 0, STOP. Otherwise go to Line 2

 (a) Write down the sequence of values that n takes for input 69.

 (b) Write down the output produced by this algorithm for input 69.

2. Euclid’s algorithm for computing the GCD of two non-negative integers can be described in pseudocode as follows:
 (i) Read the numbers m and n given as input.
 (ii) If $m = n$ then output m and STOP.
 (iii) If $m > n$ replace m by $m - n$.
 (iv) If $n > m$ replace n by $n - m$.
 (v) Go back to Line 2.

 (a) Write down the sequence of values that m and n take for input 40, 28.

 (b) Write down the output produced by this algorithm for input 40, 28.