1. Suppose that the list \(L \) equals \([100, \text{"hello"}, \text{"bye"}], [[1, 2], [2, 3], [3, 4]], 900L\).

Write down the values that the following expressions evaluate to.

(a) \(\text{len}(L) \)
(b) \(\text{len}(L[1][0]) \)
(c) \(L[2][2] \)
(d) \(\text{type}(\text{len}(L)-1) \)
(e) \(\text{type}(L[\text{len}(L)-2]) \)
(f) \(\text{type}(L[\text{len}(L)-1]) \)
(g) \(L[1][1][1] \)
(h) \(L[2][2][1] \)
(i) \"bye\" in \(L \)
(j) \"bye\" in \(L[1] \)
(k) \(900 \) in \(L \)
(l) \(100.0 \) in \(L \)
(m) \((3 \text{ in } L[2][0]) \text{ or } (3 \text{ in } L[2][1]) \)

2. What is the output the following code fragment produces.

```python
L = [10, [1, 2, 3], \"hello\", [23]]
L.append(10)
print L
L.extend([20, 10])
print L
L.append([10, 20])
print L
```

3. Write a function called \texttt{equalLengthStrings} that takes as its single parameter a list of strings and returns \texttt{True} if all the strings in the given list have the same length. The function returns \texttt{False} otherwise.

4. Write a function called \texttt{addSubsequence} that takes a list \(L \) of numbers, and two indices \(i \) and \(j \) and returns the sum \(L[i] + L[i+1] + \ldots + L[j] \). You can assume that \(L \) is non-empty and \(0 \leq i \leq j < \text{len}(L) \). For example, if \(L = [2, 4, 6, 3, 7, 2, 8, 9, 1] \) then the call to \texttt{addSubsequence(L, 2, 5)} should return 18.

5. Write a function called \texttt{deleteSubsequence} that takes a list \(L \) of numbers, and two indices \(i \) and \(j \) and returns the list with the sublist \(L[i], L[i+1], \ldots, L[j] \) removed. For example, if \(L = [2, 4, 6, 3, 7, 2, 8, 9, 1] \) then the call to \texttt{deleteSubsequence(L, 2, 5)} should return \([2, 4, 8, 9, 1]\).
6. Write a function called maxPairSum that takes a list of numbers as a parameter and returns the pair of numbers in consecutive positions that add up to the largest value. For example, if the given list is \([3, -1, 4, 2, 5, -1, 11, -8]\) then the function would return the list \([-1, 11]\).

7. Write a function called minIndex that takes a list of numbers as a parameter and returns the index of a smallest element in the list. If there are several smallest numbers in the list, it does not matter which index is returned. For example, if the parameter is \([3, -1, 2, 3, -1, 11]\) then the function could return 1 or it could return 4.